A079583 a(n) = 3*2^n - n - 2.
1, 3, 8, 19, 42, 89, 184, 375, 758, 1525, 3060, 6131, 12274, 24561, 49136, 98287, 196590, 393197, 786412, 1572843, 3145706, 6291433, 12582888, 25165799, 50331622, 100663269, 201326564, 402653155, 805306338, 1610612705, 3221225440
Offset: 0
References
- T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F. Smyth, W. Tyczynski, New and efficient approaches to the quasiperiodic characterization of a string, Proc. Prague Stringology Conf., 2012, 75-88.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tomas Flouri, Costas S. Iliopoulos, Solon P. Pissis, W. F. Smyth, On approximate string covering (draft, 2012).
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 23 2012
-
Mathematica
lst={};Do[AppendTo[lst, 3*2^n-n-2], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *) LinearRecurrence[{4,-5,2},{1,3,8},40] (* Vincenzo Librandi, Jun 23 2012 *)
-
PARI
a(n)=3<
Charles R Greathouse IV, Feb 29 2012
Formula
a(0)=1, a(n) = 2*a(n-1) + n;
Binomial transform of [1, 2, 3, 3, 3, ...]. - Gary W. Adamson, Aug 09 2007
G.f.: (x^2-x+1)/((1-2*x)*(1-x)^2) = 3*U(0)x, where U(k) = 1 - (k+2)/(3*2^k - 18*x*4^k/(6*x*2^k - (k+2)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jul 04 2012
a(n) = (A227712(n) - 1)/3 - Emeric Deutsch, Feb 18 2016
a(n) = A007283(n) - n - 2. - Miquel Cerda, Aug 07 2016
Comments