cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079583 a(n) = 3*2^n - n - 2.

Original entry on oeis.org

1, 3, 8, 19, 42, 89, 184, 375, 758, 1525, 3060, 6131, 12274, 24561, 49136, 98287, 196590, 393197, 786412, 1572843, 3145706, 6291433, 12582888, 25165799, 50331622, 100663269, 201326564, 402653155, 805306338, 1610612705, 3221225440
Offset: 0

Views

Author

Benoit Cloitre, Jan 25 2003

Keywords

Comments

Row sums of A132110. - Gary W. Adamson, Aug 09 2007
Consider the infinite sequence of strings x(1) = a, x(2) = aba, x(3) = ababbaba, ..., where x(n+1) = x(n).b^{n+1}.x(n), for n >= 1. Each x(n), for n >= 2, has borders x(1), x(2), ..., x(n-1), none of which cover x(n). The length of x(n+1) is 3*2^n-n-2. - William F. Smyth, Feb 29 2012
Number of edges in the rooted tree g[n] (n>=0) defined recursively in the following manner: denoting by P[n] the path on n vertices, we define g[0] =P[2] while g[n] (n>=1) is the tree obtained by identifying the roots of 2 copies of g[n-1] and one of the end-vertices of P[n+1]; the root of g[n] is defined to be the other end-vertex of P[n+1]. Roughly speaking, g[4], for example, is obtained from the planted full binary tree of height 5 by replacing the edges at the levels 1,2,3,4 with paths of lengths 4, 3, 2, and 1, respectively. - Emeric Deutsch, Aug 08 2013

References

  • T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F. Smyth, W. Tyczynski, New and efficient approaches to the quasiperiodic characterization of a string, Proc. Prague Stringology Conf., 2012, 75-88.

Crossrefs

Cf. A000295, A132110, A227712, A083329 (first differences).

Programs

  • Magma
    I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 23 2012
  • Mathematica
    lst={};Do[AppendTo[lst, 3*2^n-n-2], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
    LinearRecurrence[{4,-5,2},{1,3,8},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n)=3<Charles R Greathouse IV, Feb 29 2012
    

Formula

a(0)=1, a(n) = 2*a(n-1) + n;
Binomial transform of [1, 2, 3, 3, 3, ...]. - Gary W. Adamson, Aug 09 2007
G.f.: (x^2-x+1)/((1-2*x)*(1-x)^2) = 3*U(0)x, where U(k) = 1 - (k+2)/(3*2^k - 18*x*4^k/(6*x*2^k - (k+2)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jul 04 2012
a(n) = (A227712(n) - 1)/3 - Emeric Deutsch, Feb 18 2016
a(n) = A007283(n) - n - 2. - Miquel Cerda, Aug 07 2016
a(n) = A000225(n) + A000325(n). - Miquel Cerda, Aug 08 2016