cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079585 Decimal expansion of c = (7-sqrt(5))/2.

Original entry on oeis.org

2, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

c is an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Jan 08 2018
From Amiram Eldar, Jul 16 2021: (Start)
Sum_{k>=0} 1/F(2^k) is sometimes called "Millin series" after D. A. Millin, a high school student at Annville, Pennsylvania, who posed in 1974 the problem of proving that it equals (7-sqrt(5))/2. This identity was in fact already known to Lucas in 1878.
Mahler (1975) provided a false proof that this sum is transcendental. The mistake was corrected in Mahler (1976). (End)
The name "Millin" was a misprint of "Miller", the author of the problem was Dale A. Miller. His name was corrected in the solution to the problem (1976). - Amiram Eldar, Feb 29 2024

Examples

			c = 2.3819660112501051517954131656343618822796908201942371378645513772947...
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 65.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.
  • Ross Honsberger, Mathematical Gems III, Washington, DC: Math. Assoc. Amer., 1985, pp. 135-137.
  • Alfred S. Posamentier and Ingmar Lehmann, [Phi], The Glorious Golden Ratio, Prometheus Books, 2011, page 75.

Crossrefs

Programs

Formula

c = (7-sqrt(5))/2 = 4 - phi, with phi from A001622.
c = 7/2 - 10*A020837.
c = Sum_{k>=0} 1/F(2^k), where F(k) denotes the k-th Fibonacci number; c = Sum_{k>=0} 1/A058635(k).
Periodic continued fraction representation is [2, 2, 1, 1, 1, 1, ....]. - R. J. Mathar, Mar 24 2011
Minimal polynomial: 11 - 7*x + x^2. - Stefano Spezia, Oct 16 2024