cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079588 a(n) = (n+1)*(2*n+1)*(4*n+1).

Original entry on oeis.org

1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2003

Keywords

Comments

Apart from offset, same as A100147.

References

  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A100147.
Cf. A258721 (first differences), A011199.

Programs

  • Haskell
    a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4]
    -- Reinhard Zumkeller, Jun 08 2015
  • Mathematica
    Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* Amiram Eldar, Jan 13 2021 *)
    LinearRecurrence[{4,-6,4,-1},{1,30,135,364},40] (* Harvey P. Dale, Aug 01 2022 *)

Formula

Sum_{n>=0} 1/a(n) = Pi/3 (cf. Tijdeman).
G.f.: (1+26*x+21*x^2)/(1-x)^4. - L. Edson Jeffery, Mar 25 2013
Sum_{n>=0} a(n)/2^n = 308; Sum_{n>=0} (-1)^n*a(n)/2^n = -4/3. - L. Edson Jeffery, Mar 25 2013
a(n) = 8*n^3 + 14*n^2 + 7*n + 1. - Reinhard Zumkeller, Jun 08 2015
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 - Pi/2 + sqrt(2)*Pi/3 + 2*sqrt(2)*arcsin(1)/3. - Amiram Eldar, Jan 13 2021
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Jun 23 2021