A079588 a(n) = (n+1)*(2*n+1)*(4*n+1).
1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645
Offset: 0
References
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Haskell
a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4] -- Reinhard Zumkeller, Jun 08 2015
-
Mathematica
Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* Amiram Eldar, Jan 13 2021 *) LinearRecurrence[{4,-6,4,-1},{1,30,135,364},40] (* Harvey P. Dale, Aug 01 2022 *)
Formula
Sum_{n>=0} 1/a(n) = Pi/3 (cf. Tijdeman).
G.f.: (1+26*x+21*x^2)/(1-x)^4. - L. Edson Jeffery, Mar 25 2013
Sum_{n>=0} a(n)/2^n = 308; Sum_{n>=0} (-1)^n*a(n)/2^n = -4/3. - L. Edson Jeffery, Mar 25 2013
a(n) = 8*n^3 + 14*n^2 + 7*n + 1. - Reinhard Zumkeller, Jun 08 2015
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 - Pi/2 + sqrt(2)*Pi/3 + 2*sqrt(2)*arcsin(1)/3. - Amiram Eldar, Jan 13 2021
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Jun 23 2021
Comments