A011199 a(n) = (n+1)*(2*n+1)*(3*n+1).
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, 5320, 7161, 9384, 12025, 15120, 18705, 22816, 27489, 32760, 38665, 45240, 52521, 60544, 69345, 78960, 89425, 100776, 113049, 126280, 140505, 155760, 172081, 189504, 208065, 227800, 248745, 270936, 294409, 319200
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A079588.
Programs
-
GAP
List([0..40], n-> (n+1)*(2*n+1)*(3*n+1) ); # G. C. Greubel, Mar 03 2020
-
Haskell
a011199 n = product $ map ((+ 1) . (* n)) [1, 2, 3] -- Reinhard Zumkeller, Jun 08 2015
-
Magma
[&*[j*n+1:j in [1..3]]: n in [0..40]]; // G. C. Greubel, Mar 03 2020
-
Maple
seq(mul(j*n+1, j=1..3), n = 0..40); # G. C. Greubel, Mar 03 2020
-
Mathematica
Product[j*Range[0,40] +1, {j,3}] (* G. C. Greubel, Mar 03 2020 *) LinearRecurrence[{4,-6,4,-1},{1,24,105,280},40] (* Harvey P. Dale, Apr 21 2020 *)
-
PARI
vector(41, n, my(m=n-1); prod(j=1,3, j*m+1)) \\ G. C. Greubel, Mar 03 2020
-
Sage
[product(j*n+1 for j in (1..3)) for n in (0..40)] # G. C. Greubel, Mar 03 2020
Formula
G.f.: (1 + 20*x + 15*x^2)/(x-1)^4. - Alois P. Heinz, Sep 04 2014
a(n) = 6*n^3 + 11*n^2 + 6*n + 1. - Reinhard Zumkeller, Jun 08 2015
E.g.f.: (1 + 23*x + 29*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 03 2020
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/4 - 4*log(2) + 9*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2) - (1 - sqrt(3)/2)*Pi. (End)
Comments