cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A256268 Table of k-fold factorials, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 01 2015

Keywords

Comments

A variant of A142589.

Examples

			1  1   1    1     1       1         1... A000012
1  1   2    6    24     120       720... A000142
1  1   3   15   105     945     10395... A001147
1  1   4   28   280    3640     58240... A007559
1  1   5   45   585    9945    208845... A007696
1  1   6   66  1056   22176    576576... A008548
1  1   7   91  1729   43225   1339975... A008542
1  1   8  120  2640   76560   2756160... A045754
1  1   9  153  3825  126225   5175225... A045755
1  1  10  190  5320  196840   9054640... A045756
1  1  11  231  7161  293601  14977651... A144773
		

Crossrefs

Cf. Diagonals : A092985, A076111, A158887.
Cf. A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A045756 (9), A144773 (10)

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
  • Mathematica
    T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    T(n,k) = prod(j=0, n-1, j*k+1);
    for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
    
  • Sage
    [[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
    

Formula

A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - Peter Luschny, Dec 21 2021

A079588 a(n) = (n+1)*(2*n+1)*(4*n+1).

Original entry on oeis.org

1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2003

Keywords

Comments

Apart from offset, same as A100147.

References

  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A100147.
Cf. A258721 (first differences), A011199.

Programs

  • Haskell
    a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4]
    -- Reinhard Zumkeller, Jun 08 2015
  • Mathematica
    Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* Amiram Eldar, Jan 13 2021 *)
    LinearRecurrence[{4,-6,4,-1},{1,30,135,364},40] (* Harvey P. Dale, Aug 01 2022 *)

Formula

Sum_{n>=0} 1/a(n) = Pi/3 (cf. Tijdeman).
G.f.: (1+26*x+21*x^2)/(1-x)^4. - L. Edson Jeffery, Mar 25 2013
Sum_{n>=0} a(n)/2^n = 308; Sum_{n>=0} (-1)^n*a(n)/2^n = -4/3. - L. Edson Jeffery, Mar 25 2013
a(n) = 8*n^3 + 14*n^2 + 7*n + 1. - Reinhard Zumkeller, Jun 08 2015
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 - Pi/2 + sqrt(2)*Pi/3 + 2*sqrt(2)*arcsin(1)/3. - Amiram Eldar, Jan 13 2021
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Jun 23 2021

A142589 Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2008

Keywords

Comments

Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

Examples

			The transpose of the array is:
    1,    1,     1,     1,      1,      1,      1,      1,     1,
    1,    2,     3,     4,      5,      6,      7,      8,     9,
    1,    6,    15,    28,     45,     66,     91,     120,   153, ... A000384
    1,   24,   105,   280,    585,   1056,   1729,    2640,  3825, ... A011199
    1,  120,   945,  3640,   9945,  22176,  43225,   76560, 126225,... A011245
    1,  720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
        /      |       \       \
   A000142  A001147  A007559  A007696
		

Crossrefs

Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

Programs

  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
    for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    def T(n, k):
        if (k==0 and n==0): return 1
        else: return product(j*k+1 for j in (0..n))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020

Extensions

Edited by M. F. Hasler, Oct 28 2014
More terms added by G. C. Greubel, Mar 05 2020

A162651 Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.

Original entry on oeis.org

1, 6, 8, 15, 24, 27, 28, 45, 48, 60, 64, 66, 80, 91, 105, 120, 125, 153, 162, 168, 190, 192, 210, 216, 224, 231, 276, 280, 288, 312, 315, 325, 336, 343, 360, 378, 384, 405, 435, 440, 480, 496, 504, 510, 512, 528, 561, 585, 624, 627, 630, 640, 648, 693, 703, 720
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form i*(i+j)*(i+2j), where i > 0 and j >= 0.

Examples

			1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4.
120 = 1*8*15 = 2*6*10 = 4*5*6.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {}:
    for i from 1 to floor(N^(1/3)) do
      S:= S union {seq(i*(i+j)*(i+2*j),j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))}
    od:
    A:= sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • PARI
    al(n)={local(v,inc,prd);
    v=vector(n);inc=[0];prd=[1];
    for(k=1,n,
    v[k]=vecmin(prd);
    if(v[k]==prd[ #prd],inc=concat(inc,[0]);prd=concat(prd,[(#inc)^3]));
    for(j=1,#prd,if(prd[j]==v[k],inc[j]++;prd[j]=j*(j+inc[j])*(j+2*inc[j]))));
    v}
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A162651_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            for r in divisors(m,generator=True):
                if is_square(r**2-m//r):
                    yield m
                    break
    A162651_list = list(islice(A162651_gen(),20)) # Chai Wah Wu, Jul 03 2023

A111670 Array T(n,k) read by antidiagonals: the k-th column contains the first column of the k-th power of A039755.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 24, 1, 1, 5, 28, 105, 116, 1, 1, 6, 45, 280, 929, 648, 1, 1, 7, 66, 585, 3600, 9851, 4088, 1, 1, 8, 91, 1056, 9865, 56240, 121071, 28640, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 14 2005

Keywords

Examples

			 1     1       1          1          1          1          1          1
 1     2       3          4          5          6          7          8
 1     6      15         28         45         66         91        120
 1    24     105        280        585       1056       1729       2640
 1   116     929       3600       9865      22036      43001      76224
 1   648    9851      56240     203565     565096    1318023    2717856
 1  4088  121071    1029920    4953205   17148936   47920803  115146816
 1 28640 1685585   21569600  138529105  600001696 2012844225 5644055040
		

Crossrefs

Cf. A039755, A007405 (column 2), A000384 (row 2), A011199 (row 3).

Programs

  • Maple
    A111670 := proc(n,k)
        local A,i,j ;
        A := Matrix(n,n) ;
        for i from 1 to n do
        for j from 1 to n do
            A[i,j] := A039755(i-1,j-1) ;
        end do:
        end do:
        LinearAlgebra[MatrixPower](A,k) ;
        %[n,1] ;
    end proc:
    for d from 2 to 12 do
        for n from  1 to d-1 do
            printf("%d,",A111670(n,d-n)) ;
        end do:
    end do: # R. J. Mathar, Jan 27 2023
  • Mathematica
    nmax = 10;
    A[n_, k_] := Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!);
    A039755 = Array[A, {nmax, nmax}, {0, 0}];
    T = Table[MatrixPower[A039755, n][[All, 1]], {n, 1, nmax}] // Transpose;
    Table[T[[n-k+1, k]], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 02 2024 *)

Formula

Let A039755 (an analog of Stirling numbers of the second kind) be an infinite lower triangular matrix M; then the vector M^k * [1, 0, 0, 0, ...] (first column of the k-th power) is the k-th column of this array.

Extensions

Definition simplified by R. J. Mathar, Jan 27 2023

A368119 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0

Views

Author

Peter Luschny, Dec 18 2023

Keywords

Comments

A(n, k) is the number of increasing (n + 1)-ary trees on k vertices. (Following a comment of David Callan in A007559.)

Examples

			Array A(n, k) starts:
  [0] 1, 1, 1,   1,    1,      1,       1,         1, ...  A000012
  [1] 1, 1, 2,   6,   24,    120,     720,      5040, ...  A000142
  [2] 1, 1, 3,  15,  105,    945,   10395,    135135, ...  A001147
  [3] 1, 1, 4,  28,  280,   3640,   58240,   1106560, ...  A007559
  [4] 1, 1, 5,  45,  585,   9945,  208845,   5221125, ...  A007696
  [5] 1, 1, 6,  66, 1056,  22176,  576576,  17873856, ...  A008548
  [6] 1, 1, 7,  91, 1729,  43225, 1339975,  49579075, ...  A008542
  [7] 1, 1, 8, 120, 2640,  76560, 2756160, 118514880, ...  A045754
  [8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ...  A045755
		

Crossrefs

Programs

  • SageMath
    def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
    for n in range(9): print([A(n, k) for k in range(8)])

Formula

Let rf(n, k) denote the rising factorial and ff(n,k) the falling factorial.
A(n, k) = n^k * rf(1/n, k) if n > 0 else 1.
A(n, k) = (-n)^k * ff(-1/n, k) if n > 0 else 1.
A(n, k) = (n^k * Gamma(k + 1/n)) / Gamma(1/n) for n > 0.
A(n, k) = ((-n)^k * Gamma(1 - 1/n)) / Gamma(1 - 1/n - k) for n > 0.
A(n, k) = k! * [x^k](1 - n*x)^(-1/n).
A(n, k) = [x^k] hypergeom([1, 1/n], [], n*x).
Column n + 1 has a linear recurrence with constant coefficients and signature ((-1)^k*binomial(n+1, n-k) for k=0..n).
Showing 1-6 of 6 results.