A256268
Table of k-fold factorials, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0
1 1 1 1 1 1 1... A000012
1 1 2 6 24 120 720... A000142
1 1 3 15 105 945 10395... A001147
1 1 4 28 280 3640 58240... A007559
1 1 5 45 585 9945 208845... A007696
1 1 6 66 1056 22176 576576... A008548
1 1 7 91 1729 43225 1339975... A008542
1 1 8 120 2640 76560 2756160... A045754
1 1 9 153 3825 126225 5175225... A045755
1 1 10 190 5320 196840 9054640... A045756
1 1 11 231 7161 293601 14977651... A144773
-
Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n-1]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
-
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
-
T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
-
T(n,k) = prod(j=0, n-1, j*k+1);
for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
-
[[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
A079588
a(n) = (n+1)*(2*n+1)*(4*n+1).
Original entry on oeis.org
1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645
Offset: 0
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
-
a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4]
-- Reinhard Zumkeller, Jun 08 2015
-
Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* Amiram Eldar, Jan 13 2021 *)
LinearRecurrence[{4,-6,4,-1},{1,30,135,364},40] (* Harvey P. Dale, Aug 01 2022 *)
A142589
Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0
The transpose of the array is:
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, ... A011199
1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225,... A011245
1, 720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
/ | \ \
A000142 A001147 A007559 A007696
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
-
T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
-
T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
-
T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
def T(n, k):
if (k==0 and n==0): return 1
else: return product(j*k+1 for j in (0..n))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020
A162651
Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.
Original entry on oeis.org
1, 6, 8, 15, 24, 27, 28, 45, 48, 60, 64, 66, 80, 91, 105, 120, 125, 153, 162, 168, 190, 192, 210, 216, 224, 231, 276, 280, 288, 312, 315, 325, 336, 343, 360, 378, 384, 405, 435, 440, 480, 496, 504, 510, 512, 528, 561, 585, 624, 627, 630, 640, 648, 693, 703, 720
Offset: 1
1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4.
120 = 1*8*15 = 2*6*10 = 4*5*6.
-
N:= 1000: # for all terms <= N
S:= {}:
for i from 1 to floor(N^(1/3)) do
S:= S union {seq(i*(i+j)*(i+2*j),j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))}
od:
A:= sort(convert(S,list)); # Robert Israel, Feb 05 2020
-
al(n)={local(v,inc,prd);
v=vector(n);inc=[0];prd=[1];
for(k=1,n,
v[k]=vecmin(prd);
if(v[k]==prd[ #prd],inc=concat(inc,[0]);prd=concat(prd,[(#inc)^3]));
for(j=1,#prd,if(prd[j]==v[k],inc[j]++;prd[j]=j*(j+inc[j])*(j+2*inc[j]))));
v}
-
from itertools import count, islice
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A162651_gen(startvalue=1): # generator of terms >= startvalue
for m in count(max(startvalue,1)):
for r in divisors(m,generator=True):
if is_square(r**2-m//r):
yield m
break
A162651_list = list(islice(A162651_gen(),20)) # Chai Wah Wu, Jul 03 2023
A111670
Array T(n,k) read by antidiagonals: the k-th column contains the first column of the k-th power of A039755.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 24, 1, 1, 5, 28, 105, 116, 1, 1, 6, 45, 280, 929, 648, 1, 1, 7, 66, 585, 3600, 9851, 4088, 1, 1, 8, 91, 1056, 9865, 56240, 121071, 28640, 1
Offset: 1
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 6 15 28 45 66 91 120
1 24 105 280 585 1056 1729 2640
1 116 929 3600 9865 22036 43001 76224
1 648 9851 56240 203565 565096 1318023 2717856
1 4088 121071 1029920 4953205 17148936 47920803 115146816
1 28640 1685585 21569600 138529105 600001696 2012844225 5644055040
-
A111670 := proc(n,k)
local A,i,j ;
A := Matrix(n,n) ;
for i from 1 to n do
for j from 1 to n do
A[i,j] := A039755(i-1,j-1) ;
end do:
end do:
LinearAlgebra[MatrixPower](A,k) ;
%[n,1] ;
end proc:
for d from 2 to 12 do
for n from 1 to d-1 do
printf("%d,",A111670(n,d-n)) ;
end do:
end do: # R. J. Mathar, Jan 27 2023
-
nmax = 10;
A[n_, k_] := Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!);
A039755 = Array[A, {nmax, nmax}, {0, 0}];
T = Table[MatrixPower[A039755, n][[All, 1]], {n, 1, nmax}] // Transpose;
Table[T[[n-k+1, k]], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 02 2024 *)
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Showing 1-6 of 6 results.
Comments