cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079612 Largest number m such that a^n == 1 (mod m) whenever a is coprime to m.

Original entry on oeis.org

2, 24, 2, 240, 2, 504, 2, 480, 2, 264, 2, 65520, 2, 24, 2, 16320, 2, 28728, 2, 13200, 2, 552, 2, 131040, 2, 24, 2, 6960, 2, 171864, 2, 32640, 2, 24, 2, 138181680, 2, 24, 2, 1082400, 2, 151704, 2, 5520, 2, 1128, 2, 4455360, 2, 264, 2, 12720, 2, 86184, 2, 13920
Offset: 1

Views

Author

N. J. A. Sloane, Jan 29 2003

Keywords

Comments

a(m) divides the Jordan function J_m(n) for all n except when n is a prime dividing a(m) or m=2, n=4; it is the largest number dividing all but finitely many values of J_m(n). For m > 0, a(m) also divides Sum_{k=1}^n J_m(k) for n >= the largest exceptional value. - Franklin T. Adams-Watters, Dec 10 2005
The numbers m with this property are the divisors of a(n) that are not divisors of a(r) for r

References

  • R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(n), see p. 303.)

Crossrefs

Cf. A006863 (bisection except for initial term); A059379 (Jordan function).

Programs

  • PARI
    a(n) = {if (n%2, 2, res = 1; forprime(p=2, n+1, if (!(n % (p-1)), t = valuation(n, p); if (p==2, if (t, res *= p^(t+2)), res *= p^(t+1)););); res;);} \\ Michel Marcus, May 12 2018

Formula

a(n) = 2 for n odd; for n even, a(n) = product of 2^(t+2) (where 2^t exactly divides n) and p^(t+1) (where p runs through all odd primes such that p-1 divides n and p^t exactly divides n).
From Antti Karttunen, Dec 19 2018: (Start)
a(n) = A185633(n)*(2-A000035(n)).
It also seems that for n > 1, a(n) = 2*A075180(n-1). (End)
We have 2*A075180(2n-1) = A006863(n) by definition, and A006863(n) = a(2n) by the comments in A006863. Hence a(n) = 2*A075180(n-1) for all even n. For all odd n > 1, we have a(n) = 2, which is also equal to 2*A075180(n-1). So the formula above is true. - Jianing Song, Apr 05 2021

Extensions

Edited by Franklin T. Adams-Watters, Dec 10 2005
Definition corrected by T. D. Noe, Aug 13 2008
Rather arbitrary term a(0) removed by Max Alekseyev, May 27 2010