A079636 Smallest number whose reciprocal fits in the square-root gap of consecutive primes.
4, 2, 3, 2, 4, 2, 5, 3, 2, 6, 2, 4, 7, 4, 3, 3, 8, 3, 5, 9, 3, 5, 4, 3, 5, 11, 6, 11, 6, 2, 6, 4, 12, 3, 13, 5, 5, 7, 5, 5, 14, 3, 14, 7, 15, 3, 3, 8, 16, 8, 6, 16, 4, 6, 6, 6, 17, 6, 9, 17, 4, 3, 9, 18, 9, 3, 7, 4, 19, 10, 7, 5, 7, 7, 10, 7, 5, 10, 6, 5, 21
Offset: 1
Examples
a(3) = 3 because p(3)=5, p(4)=7, w=sqrt(5), w'=sqrt(7) and 1/(w'-w)=2.44.
References
- Jim Ferry, sci.math, Jan 30 2003
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> ((w, v)-> ceil(1/(w-v)))(map(sqrt@ithprime, [n+1, n])[]): seq(a(n), n=1..81); # Alois P. Heinz, Aug 23 2025
-
Mathematica
Ceiling[1/Subtract @@@ Reverse[Partition[Sqrt[Prime[Range[100]]], 2, 1], 2]] (* Paolo Xausa, Aug 24 2025 *)
Formula
a(n) = ceiling(1/(w'-w)) where w=sqrt(p(n)) and w'=sqrt(p(n+1)).
a(n) = A252477(n) + 1. - Hugo Pfoertner, Aug 23 2025
Extensions
More terms from Sean A. Irvine, Aug 23 2025
Comments