cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A079810 Sums of diagonals (upward from left to right) of the triangle shown in A079809.

Original entry on oeis.org

1, 1, 5, 3, 8, 8, 16, 12, 21, 21, 33, 27, 40, 40, 56, 48, 65, 65, 85, 75, 96, 96, 120, 108, 133, 133, 161, 147, 176, 176, 208, 192, 225, 225, 261, 243, 280, 280, 320, 300, 341, 341, 385, 363, 408, 408, 456, 432, 481, 481, 533, 507, 560, 560, 616, 588, 645, 645
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Examples

			a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // G. C. Greubel, Dec 12 2023
    
  • Mathematica
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1}, {1,1,5,3,8,8,16,12,21}, 70] (* G. C. Greubel, Dec 12 2023 *)
  • SageMath
    def A079810_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
    a=A079810_list(71); a[1:] # G. C. Greubel, Dec 12 2023

Formula

a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
From G. C. Greubel, Dec 12 2023: (Start)
a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)

Extensions

Edited by David Wasserman, May 11 2004

A079811 Sum of numbers read upward at a 45-degree angle in A079809.

Original entry on oeis.org

1, 2, 2, 6, 7, 10, 10, 18, 19, 24, 24, 36, 37, 44, 44, 60, 61, 70, 70, 90, 91, 102, 102, 126, 127, 140, 140, 168, 169, 184, 184, 216, 217, 234, 234, 270, 271, 290, 290, 330, 331, 352, 352, 396, 397, 420, 420, 468, 469, 494, 494, 546, 547, 574, 574, 630, 631
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Crossrefs

The two bisections are A309805 and twice A211538 (with leading zeros dropped).

Extensions

Terms a(8) and beyond from Andrey Zabolotskiy, Jan 18 2024

A079808 Consider a triangle in which the 2n-th row contains first 2n positive integers in decreasing order and the (2n+1)-st row contains first 2n+1 positive integers in increasing order; sequence contains concatenation of numbers read upward at a 45-degree angle.

Original entry on oeis.org

1, 2, 11, 42, 133, 622, 1531, 8244, 17335, 102642, 193551, 1228446, 11137537, 142104662, 113395571, 1621248648, 11531157739, 182144106682, 117313597591, 20216412688410, 119315511779311, 2221841461086102, 1213175137995111
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Examples

			Triangle begins as:
  1;
  2 1;
  1 2 3;
  4 3 2 1;
  1 2 3 4 5;
  6 5 4 3 2 1;
		

Crossrefs

Cf. A079809.

Programs

  • Mathematica
    a[n_] := FromDigits[Join@@Table[IntegerDigits[If[EvenQ[n+1-i], n+2-2i, i]], {i, 1, Ceiling[n/2]}]]
Showing 1-3 of 3 results.