cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079809 Consider a triangle in which the 2n-th row contains first 2n positive integers in increasing order and the (2n+1)-st row contains first 2n+1 positive integers in decreasing order; sequence contains concatenation of numbers read upward at a 45-degree angle.

Original entry on oeis.org

1, 1, 32, 12, 521, 143, 7234, 1632, 92541, 18345, 1127436, 1103652, 13294561, 11238547, 1521147638, 1143105672, 17213496581, 11631258749, 19215411678310, 1183145107692, 212174136985101, 120316512789411, 232194156118710312
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Examples

			Triangle begins with:
  1;
  1 2;
  3 2 1;
  1 2 3 4;
  5 4 3 2 1;
  1 2 3 4 5 6;
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Join@@Table[IntegerDigits[If[OddQ[n+1-i], n+2-2i, i]], {i, 1, Ceiling[n/2]}]]

A079810 Sums of diagonals (upward from left to right) of the triangle shown in A079809.

Original entry on oeis.org

1, 1, 5, 3, 8, 8, 16, 12, 21, 21, 33, 27, 40, 40, 56, 48, 65, 65, 85, 75, 96, 96, 120, 108, 133, 133, 161, 147, 176, 176, 208, 192, 225, 225, 261, 243, 280, 280, 320, 300, 341, 341, 385, 363, 408, 408, 456, 432, 481, 481, 533, 507, 560, 560, 616, 588, 645, 645
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Examples

			a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // G. C. Greubel, Dec 12 2023
    
  • Mathematica
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1}, {1,1,5,3,8,8,16,12,21}, 70] (* G. C. Greubel, Dec 12 2023 *)
  • SageMath
    def A079810_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
    a=A079810_list(71); a[1:] # G. C. Greubel, Dec 12 2023

Formula

a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
From G. C. Greubel, Dec 12 2023: (Start)
a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)

Extensions

Edited by David Wasserman, May 11 2004

A079823 Consider the triangle shown below; sequence contains the concatenation of numbers read at a 45-degree angle upwards with horizontal beginning with the first term of a row.

Original entry on oeis.org

1, 2, 43, 75, 1186, 16129, 22171310, 29231814, 3730241915, 4638312520, 564739322621, 675748403327, 79685849413428, 92806959504235, 10693817060514336, 121107948271615244, 137122108958372625345, 1541381231099684736354, 1721551391241109785746455
Offset: 1

Views

Author

Amarnath Murthy, Feb 11 2003

Keywords

Comments

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17 18 19 20 21
...
a(n) also is the concatenation of the terms of the n-th row of A056536. - Michel Marcus, Dec 14 2023

Crossrefs

Programs

  • Maple
    read("transforms"):
    A079823aux := proc(n,k)
        A000124(n)+k ;
    end proc:
    A079823 := proc(n)
        local L,k,n0 ;
        n0 := n-1 ;
        L := [] ;
        for k from 0 do
            if k > n0-k then
                break;
            end if;
            L := [op(L),A079823aux(n0-k,k)] ;
        end do:
        digcatL(L) ;
    end proc: # R. J. Mathar, Aug 23 2012
    # second Maple program:
    T:= (i, j)-> i*(i-1)/2+j:
    a:= n-> parse(cat(seq(T(n-j,j+1), j=0..(n-1)/2))):
    seq(a(n), n=1..23);  # Alois P. Heinz, Aug 03 2022
  • Mathematica
    Table[FromDigits[Join@@IntegerDigits[Table[Binomial[n-k+1,2] + k, {k, Ceiling[n/2]}]]], {n,30}] (* G. C. Greubel, Dec 13 2023 *)

Extensions

More terms from Jason D. W. Taff (jtaff(AT)jburroughs.org), Oct 31 2003
Corrected by Philippe Deléham, Feb 16 2004

A079811 Sum of numbers read upward at a 45-degree angle in A079809.

Original entry on oeis.org

1, 2, 2, 6, 7, 10, 10, 18, 19, 24, 24, 36, 37, 44, 44, 60, 61, 70, 70, 90, 91, 102, 102, 126, 127, 140, 140, 168, 169, 184, 184, 216, 217, 234, 234, 270, 271, 290, 290, 330, 331, 352, 352, 396, 397, 420, 420, 468, 469, 494, 494, 546, 547, 574, 574, 630, 631
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Crossrefs

The two bisections are A309805 and twice A211538 (with leading zeros dropped).

Extensions

Terms a(8) and beyond from Andrey Zabolotskiy, Jan 18 2024
Showing 1-4 of 4 results.