A079861 a(n) is the number of occurrences of 7's in the palindromic compositions of 2*n-1, or also, the number of occurrences of 8's in the palindromic compositions of 2*n.
10, 22, 48, 104, 224, 480, 1024, 2176, 4608, 9728, 20480, 43008, 90112, 188416, 393216, 819200, 1703936, 3538944, 7340032, 15204352, 31457280, 65011712, 134217728, 276824064, 570425344, 1174405120, 2415919104, 4966055936
Offset: 8
Examples
a(8)=10 since the palindromic compositions of 15 that contain a 7 are 7+1+7, 4+7+4, 1+3+7+3+1, 3+1+7+1+3, 2+2+7+2+2, 1+1+1+1+7+1+1+1+1, 1+1+2+7+2+1+1, 1+2+1+7+1+2+1 and 2+1+1+7+1+1+2, for a total of 10 7's.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..1000
- Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, The Frequency of Summands of a Particular Size in Palindromic Compositions, Ars Combin., Vol. 69 (2003), pp. 65-78.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Magma
[(2+n)*2^(n-8) : n in [8..40]]; // Vincenzo Librandi, Sep 22 2011
-
Mathematica
Table[(2 + i)*2^(i - 8), {i, 8, 50}] LinearRecurrence[{4,-4},{10,22},50] (* Harvey P. Dale, Jun 04 2025 *)
-
PARI
Vec(-2*x^8*(9*x-5)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Dec 16 2014
Formula
a(n) = (2+n)*2^(n-8).
a(n) = 2*A111297(n-6). - Colin Barker, Dec 16 2014
a(n) = 4*a(n-1) - 4*a(n-2). - Colin Barker, Dec 16 2014
G.f.: -2*x^8*(9*x-5) / (2*x-1)^2. - Colin Barker, Dec 16 2014
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=8} 1/a(n) = 1024*log(2) - 447047/630.
Sum_{n>=8} (-1)^n/a(n) = 261617/630 - 1024*log(3/2). (End)
Comments