A078836
a(n) = n*2^(n-6).
Original entry on oeis.org
6, 14, 32, 72, 160, 352, 768, 1664, 3584, 7680, 16384, 34816, 73728, 155648, 327680, 688128, 1441792, 3014656, 6291456, 13107200, 27262976, 56623104, 117440512, 243269632, 503316480, 1040187392, 2147483648, 4429185024, 9126805504, 18790481920, 38654705664
Offset: 6
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 17 2003
a(6) = 6 since the palindromic compositions of 11 that contain a 5 are 3+5+3, 1+2+5+2+1, 2+1+5+1+2, 1+1+1+5+1+1+1 and 5+1+5, for a total of 6 5s. The palindromic compositions of 12 that contain a 6 are 3+6+3, 1+2+6+2+1, 2+1+6+1+2, 1+1+1+6+1+1+1 and 6+6.
- Vincenzo Librandi, Table of n, a(n) for n = 6..3000
- Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin., Vol. 69 (2003), pp. 65-78.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Sun Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
[n*2^(n-6): n in [6..40]]; // Vincenzo Librandi, Oct 04 2011
-
Table[n 2^(n - 6), {m, 6, 50}]
LinearRecurrence[{4, -4}, {6, 14}, 20] (* Eric W. Weisstein, Sep 27 2017 *)
CoefficientList[Series[-2 (-3 + 5 x)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
a(n)=n<<(n-6) \\ Charles R Greathouse IV, Oct 03 2011
-
Vec(-2*x^6*(5*x-3)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
-
def a(n): return n << (n-6)
print([a(n) for n in range(6, 37)]) # Michael S. Branicky, Jun 14 2021
A079859
a(n) = n*2^(n-4).
Original entry on oeis.org
4, 10, 24, 56, 128, 288, 640, 1408, 3072, 6656, 14336, 30720, 65536, 139264, 294912, 622592, 1310720, 2752512, 5767168, 12058624, 25165824, 52428800, 109051904, 226492416, 469762048, 973078528, 2013265920, 4160749568, 8589934592, 17716740096, 36507222016
Offset: 4
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
a(4)=4 since the palindromic compositions of 7 that contain a 3 are 2+3+2, 1+1+3+1+1 and 3+1+3, for a total of 4 3s. The palindromic compositions of 8 that contain a 4 are 2+4+2, 1+1+4+1+1 and 4+4.
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin., Vol. 69 (2003), pp. 65-78.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- Math StackExchange, The distribution of areas of a random triangle on the sphere.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
[n*2^(n-4) : n in [4..40]]; // Vincenzo Librandi, Sep 22 2011
-
Table[i*2^(i - 4), {i, 4, 50}]
-
Vec(-2*x^4*(3*x-2)/(2*x-1)^2 + O(x^50)) \\ Colin Barker, Sep 29 2015
-
a(n) = n*2^(n-4);
vector(40, n, a(n+3)) \\ Altug Alkan, Sep 29 2015
A079862
a(i) = the number of occurrences of 9's in the palindromic compositions of n=2*i-1 = the number of occurrences of 10's in the palindromic compositions of n=2*i.
Original entry on oeis.org
18, 38, 80, 168, 352, 736, 1536, 3200, 6656, 13824, 28672, 59392, 122880, 253952, 524288, 1081344, 2228224, 4587520, 9437184, 19398656, 39845888, 81788928, 167772160, 343932928, 704643072, 1442840576, 2952790016, 6039797760, 12348030976, 25232932864
Offset: 10
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
a(10) = 18 since the palindromic compositions of 19 that contain a 9 are 9+1+9 and the 16 compositions of the form c+9+(reverse of c), where c represents a composition of 5.
-
Table[(8 + i)*2^(i - 10), {i, 10, 50}]
-
Vec(-2*x^10*(17*x-9)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
A079863
a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.
Original entry on oeis.org
34, 70, 144, 296, 608, 1248, 2560, 5248, 10752, 22016, 45056, 92160, 188416, 385024, 786432, 1605632, 3276800, 6684672, 13631488, 27787264, 56623104, 115343360, 234881024, 478150656, 973078528, 1979711488, 4026531840, 8187281408, 16642998272, 33822867456
Offset: 12
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
-
Table[(22 + i)*2^(i - 12), {i, 12, 50}]
LinearRecurrence[{4,-4},{34,70},30] (* Harvey P. Dale, Jan 30 2017 *)
-
Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
-
a(n)=(n+22)<<(n-12) \\ Charles R Greathouse IV, Sep 29 2015
A079028
a(0) = 1, a(n) = (n + 4)*4^(n-1) for n >= 1.
Original entry on oeis.org
1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640, 67108864, 285212672, 1207959552, 5100273664, 21474836480, 90194313216, 377957122048, 1580547964928, 6597069766656, 27487790694400, 114349209288704, 474989023199232, 1970324836974592, 8162774324609024
Offset: 0
A227978
a(0)=1, a(1)=2; for n>1, a(n) = n*(2^n+4)/4.
Original entry on oeis.org
1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, 2570, 5643, 12300, 26637, 57358, 122895, 262160, 557073, 1179666, 2490387, 5242900, 11010069, 23068694, 48234519, 100663320, 209715225, 436207642, 905969691, 1879048220, 3892314141, 8053063710, 16642998303
Offset: 0
-
[1,2] cat [n*(2^n+4)/4: n in [2..40]]; // Bruno Berselli, Oct 11 2013
-
Join[{1, 2}, Table[n (2^n + 4)/4, {n, 2, 40}]] (* Bruno Berselli, Oct 11 2013 *)
-
a(n) = if (n == 0, 1, if (n == 1, 2, n*(2^n+4)/4)); \\ Michel Marcus, Oct 11 2013
A239631
Triangular array read by rows: T(n,k) is the number of parts equal to k over all palindromic compositions of n, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 1, 3, 0, 1, 6, 3, 0, 1, 8, 2, 1, 0, 1, 16, 8, 2, 1, 0, 1, 20, 6, 4, 0, 1, 0, 1, 40, 20, 6, 4, 0, 1, 0, 1, 48, 16, 10, 2, 2, 0, 1, 0, 1, 96, 48, 16, 10, 2, 2, 0, 1, 0, 1, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1, 224, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
Offset: 1
1,
2, 1,
3, 0, 1,
6, 3, 0, 1,
8, 2, 1, 0, 1,
16, 8, 2, 1, 0, 1,
20, 6, 4, 0, 1, 0, 1,
40, 20, 6, 4, 0, 1, 0, 1,
48, 16, 10, 2, 2, 0, 1, 0, 1,
96, 48, 16, 10,2, 2, 0, 1, 0, 1,
112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
In the palindromic compositions of 5: 5, 1+3+1, 2+1+2, 1+1+1+1+1 there are T(5,1)=8 ones, T(5,2)=2 twos, and T(5,3)=1 three and T(5,5)=1 five.
-
nn=15;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1]&,Level[Table[r=Solve[p==1/(1-x)-x^n+y x^n+(x^2/(1-x^2)-x^(2n)+y^2x^(2n))p,p];CoefficientList[Series[D[p/.r,y]/.y->1,{x,0,nn}],x],{n,1,nn}],{2}]]],1][[n]],n],{n,1,nn}]//Grid
Comments