cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A087447 a(0) = a(1) = 1; for n > 1, a(n) = (n+2)*2^(n-2).

Original entry on oeis.org

1, 1, 4, 10, 24, 56, 128, 288, 640, 1408, 3072, 6656, 14336, 30720, 65536, 139264, 294912, 622592, 1310720, 2752512, 5767168, 12058624, 25165824, 52428800, 109051904, 226492416, 469762048, 973078528, 2013265920, 4160749568
Offset: 0

Views

Author

Paul Barry, Sep 05 2003

Keywords

Comments

Binomial transform of A005408 (with interpolated zeros). Binomial transform is A087448. a(n+2) = 2*A045623(n+1); a(n+1) = A001792(n) + (0^n - (-2)^n)/2. The sequence 1,4,10,... given by 2^n*(n+3)/2 - 0^n/2 is the binomial transform of 1,3,3,5,5,...
Equals real part of binomial transform of [1, 2*i, 3, 4*i, 5, 6*i, ...]; i=sqrt(-1). - Gary W. Adamson, Sep 21 2008
An elephant sequence, see A175655. For the central square 24 A[5] vectors, with decimal values between 27 and 432, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A057711 (without the leading 0). - Johannes W. Meijer, Aug 15 2010

Crossrefs

Essentially same as A079859.

Programs

  • Mathematica
    Join[{1, 1}, Table[(n + 2) 2^(n - 2), {n, 2, 30}]]  (* Harvey P. Dale, Feb 22 2011 *)
  • Python
    def A087447(n): return n+2<1 else 1 # Chai Wah Wu, Oct 03 2024

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*(2k+1). - Paul Barry, Nov 29 2004
From Colin Barker, Mar 23 2012: (Start)
G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^2.
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. (End)
E.g.f.: (1 - x + exp(2*x)*(1 + x))/2. - Stefano Spezia, Jan 31 2023

Extensions

Definition corrected (by a factor of 2) by R. J. Mathar, Feb 21 2009

A078836 a(n) = n*2^(n-6).

Original entry on oeis.org

6, 14, 32, 72, 160, 352, 768, 1664, 3584, 7680, 16384, 34816, 73728, 155648, 327680, 688128, 1441792, 3014656, 6291456, 13107200, 27262976, 56623104, 117440512, 243269632, 503316480, 1040187392, 2147483648, 4429185024, 9126805504, 18790481920, 38654705664
Offset: 6

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 17 2003

Keywords

Comments

a(n) is the number of occurrences of 5s in the palindromic compositions of 2n-1 = the number of occurrences of 6s in the palindromic compositions of 2n.
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A079859, A079861 - A079863. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
Also the number of independent vertex sets and vertex covers in the (n-4)-sun graph. - Eric W. Weisstein, Sep 27 2017

Examples

			a(6) = 6 since the palindromic compositions of 11 that contain a 5 are 3+5+3, 1+2+5+2+1, 2+1+5+1+2, 1+1+1+5+1+1+1 and 5+1+5, for a total of 6 5s. The palindromic compositions of 12 that contain a 6 are 3+6+3, 1+2+6+2+1, 2+1+6+1+2, 1+1+1+6+1+1+1 and 6+6.
		

Crossrefs

Programs

  • Magma
    [n*2^(n-6): n in [6..40]]; // Vincenzo Librandi, Oct 04 2011
    
  • Mathematica
    Table[n 2^(n - 6), {m, 6, 50}]
    LinearRecurrence[{4, -4}, {6, 14}, 20] (* Eric W. Weisstein, Sep 27 2017 *)
    CoefficientList[Series[-2 (-3 + 5 x)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=n<<(n-6) \\ Charles R Greathouse IV, Oct 03 2011
    
  • PARI
    Vec(-2*x^6*(5*x-3)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • Python
    def a(n): return n << (n-6)
    print([a(n) for n in range(6, 37)]) # Michael S. Branicky, Jun 14 2021

Formula

From Colin Barker, Sep 29 2015: (Start)
a(n) = 2*A045891(n-4).
a(n) = 4*a(n-1) - 4*a(n-2) for n > 7.
G.f.: -2*x^6*(5*x-3) / (2*x-1)^2.
(End)
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=6} 1/a(n) = 64*log(2) - 661/15.
Sum_{n>=6} (-1)^n/a(n) = 391/15 - 64*log(3/2). (End)

A079861 a(n) is the number of occurrences of 7's in the palindromic compositions of 2*n-1, or also, the number of occurrences of 8's in the palindromic compositions of 2*n.

Original entry on oeis.org

10, 22, 48, 104, 224, 480, 1024, 2176, 4608, 9728, 20480, 43008, 90112, 188416, 393216, 819200, 1703936, 3538944, 7340032, 15204352, 31457280, 65011712, 134217728, 276824064, 570425344, 1174405120, 2415919104, 4966055936
Offset: 8

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003

Keywords

Comments

This sequence is part of a family of sequences, namely R(n,k), the number of k's in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2*k.

Examples

			a(8)=10 since the palindromic compositions of 15 that contain a 7 are 7+1+7, 4+7+4, 1+3+7+3+1, 3+1+7+1+3, 2+2+7+2+2, 1+1+1+1+7+1+1+1+1, 1+1+2+7+2+1+1, 1+2+1+7+1+2+1 and 2+1+1+7+1+1+2, for a total of 10 7's.
		

Crossrefs

Programs

  • Magma
    [(2+n)*2^(n-8) : n in [8..40]]; // Vincenzo Librandi, Sep 22 2011
    
  • Mathematica
    Table[(2 + i)*2^(i - 8), {i, 8, 50}]
    LinearRecurrence[{4,-4},{10,22},50] (* Harvey P. Dale, Jun 04 2025 *)
  • PARI
    Vec(-2*x^8*(9*x-5)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Dec 16 2014

Formula

a(n) = (2+n)*2^(n-8).
a(n) = 2*A111297(n-6). - Colin Barker, Dec 16 2014
a(n) = 4*a(n-1) - 4*a(n-2). - Colin Barker, Dec 16 2014
G.f.: -2*x^8*(9*x-5) / (2*x-1)^2. - Colin Barker, Dec 16 2014
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=8} 1/a(n) = 1024*log(2) - 447047/630.
Sum_{n>=8} (-1)^n/a(n) = 261617/630 - 1024*log(3/2). (End)

A079862 a(i) = the number of occurrences of 9's in the palindromic compositions of n=2*i-1 = the number of occurrences of 10's in the palindromic compositions of n=2*i.

Original entry on oeis.org

18, 38, 80, 168, 352, 736, 1536, 3200, 6656, 13824, 28672, 59392, 122880, 253952, 524288, 1081344, 2228224, 4587520, 9437184, 19398656, 39845888, 81788928, 167772160, 343932928, 704643072, 1442840576, 2952790016, 6039797760, 12348030976, 25232932864
Offset: 10

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003

Keywords

Comments

This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.

Examples

			a(10) = 18 since the palindromic compositions of 19 that contain a 9 are 9+1+9 and the 16 compositions of the form c+9+(reverse of c), where c represents a composition of 5.
		

Crossrefs

Programs

  • Mathematica
    Table[(8 + i)*2^(i - 10), {i, 10, 50}]
  • PARI
    Vec(-2*x^10*(17*x-9)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015

Formula

a(n) = (n+8)*2^(n-10).
From Colin Barker, Sep 29 2015: (Start)
a(n) = 2*A159697(n-10).
a(n) = 4*a(n-1) - 4*a(n-2) for n>11.
G.f.: -2*x^10*(17*x-9) / (2*x-1)^2.
(End)

A079863 a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.

Original entry on oeis.org

34, 70, 144, 296, 608, 1248, 2560, 5248, 10752, 22016, 45056, 92160, 188416, 385024, 786432, 1605632, 3276800, 6684672, 13631488, 27787264, 56623104, 115343360, 234881024, 478150656, 973078528, 1979711488, 4026531840, 8187281408, 16642998272, 33822867456
Offset: 12

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003

Keywords

Comments

This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.

Examples

			a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
		

Crossrefs

Programs

  • Mathematica
    Table[(22 + i)*2^(i - 12), {i, 12, 50}]
    LinearRecurrence[{4,-4},{34,70},30] (* Harvey P. Dale, Jan 30 2017 *)
  • PARI
    Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • PARI
    a(n)=(n+22)<<(n-12) \\ Charles R Greathouse IV, Sep 29 2015

Formula

a(n) = (n+22)*2^(n-12).
From Colin Barker, Sep 29 2015: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n>13.
G.f.: -2*x^12*(33*x-17) / (2*x-1)^2.
(End)

A049089 Array read by antidiagonals: T(1,j)=2j+2 i>=1, T(i,1)=2i+2 i>=1, T(i,j)=T(i-1,j-1)+T(i-1,j).

Original entry on oeis.org

4, 6, 6, 8, 10, 8, 10, 16, 14, 10, 12, 24, 24, 18, 12, 14, 34, 40, 32, 22, 14, 16, 46, 64, 56, 40, 26, 16, 18, 60, 98, 96, 72, 48, 30, 18, 20, 76, 144, 160, 128, 88, 56, 34, 20, 22, 94, 204, 258, 224, 160, 104, 64, 38, 22, 24, 114, 280, 402, 384, 288, 192, 120, 72, 42, 24, 26, 136, 374, 606, 642
Offset: 1

Views

Author

Benoit Cloitre, Jun 17 2003

Keywords

Examples

			Table begins:
   4,   6,   8,  10,  12, ...
   6,  10,  14,  18,  22, ...
   8,  16,  24,  32,  40, ...
  10,  24,  40,  56,  72, ...
  12,  34,  64,  96, 128, ...
  ...
		

Crossrefs

Cf. A079859.

Extensions

Offset corrected by Sean A. Irvine, Jul 18 2021

A239631 Triangular array read by rows: T(n,k) is the number of parts equal to k over all palindromic compositions of n, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 6, 3, 0, 1, 8, 2, 1, 0, 1, 16, 8, 2, 1, 0, 1, 20, 6, 4, 0, 1, 0, 1, 40, 20, 6, 4, 0, 1, 0, 1, 48, 16, 10, 2, 2, 0, 1, 0, 1, 96, 48, 16, 10, 2, 2, 0, 1, 0, 1, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1, 224, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
Offset: 1

Views

Author

Geoffrey Critzer, Mar 22 2014

Keywords

Examples

			1,
2,   1,
3,   0,  1,
6,   3,  0,  1,
8,   2,  1,  0, 1,
16,  8,  2,  1, 0, 1,
20,  6,  4,  0, 1, 0, 1,
40,  20, 6,  4, 0, 1, 0, 1,
48,  16, 10, 2, 2, 0, 1, 0, 1,
96,  48, 16, 10,2, 2, 0, 1, 0, 1,
112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
In the palindromic compositions of 5: 5, 1+3+1, 2+1+2, 1+1+1+1+1  there are T(5,1)=8 ones, T(5,2)=2 twos, and T(5,3)=1 three and T(5,5)=1 five.
		

Crossrefs

Programs

  • Mathematica
    nn=15;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1]&,Level[Table[r=Solve[p==1/(1-x)-x^n+y x^n+(x^2/(1-x^2)-x^(2n)+y^2x^(2n))p,p];CoefficientList[Series[D[p/.r,y]/.y->1,{x,0,nn}],x],{n,1,nn}],{2}]]],1][[n]],n],{n,1,nn}]//Grid

Formula

Explicit formulas for T(n,k) given in reference [Chinn, Grimaldi, Heubach] as Theorem 6:
T(n,k) = 0 if n
T(n,k) = 2^(floor(n/2)-k)*(2 + floor(n/2) - k) if n>=2k and n!=k (mod 2);
T(n,k) = 1 if n=k;
T(n,k) = 2^((n-k)/2-1) if k
T(n,k) = 2^(floor(n/2)-k)*(2 + floor(n/2) - k + 2^floor((k+1)/2-1)) if n>=2k and n==k (mod 2).
O.g.f. for column k: x^k/(1-F(x^2)) + 2*x^(2*k)*(1 + F(x))/(1 - F(x^2))^2 where F(x)= x/(1-x).
Showing 1-7 of 7 results.