cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079890 Least number > n having one more prime factor than n, not necessarily distinct.

Original entry on oeis.org

2, 4, 4, 8, 6, 8, 9, 16, 12, 12, 14, 16, 14, 18, 18, 32, 21, 24, 21, 24, 27, 27, 25, 32, 27, 27, 36, 36, 33, 36, 33, 64, 42, 42, 42, 48, 38, 42, 42, 48, 46, 54, 46, 54, 54, 50, 49, 64, 50, 54, 52, 54, 55, 72, 63, 72, 63, 63, 62, 72, 62, 63, 81, 128, 66, 81, 69, 81, 70, 81, 74, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2003

Keywords

Comments

A001222(a(n)) = A001222(n) + 1;
a(2^k) = 2^(k+1).
a(A076156(n)) = A076156(n)+1. - Reinhard Zumkeller, Feb 01 2008

Crossrefs

Programs

  • Haskell
    a079890 n = head [x | x <- [n + 1 ..], a001222 x == 1 + a001222 n]
    -- Reinhard Zumkeller, Aug 29 2013
  • Mathematica
    lng[n_]:=Module[{x=n+1,pon=PrimeOmega[n]},While[PrimeOmega[x]-pon!=1, x++]; x]; Array[lng,80] (* Harvey P. Dale, Nov 09 2011 *)

A079893 a(n) = gcd(n, A079892(n)), where A079892(n) is the least number > n having one more distinct prime factor than n.

Original entry on oeis.org

1, 2, 3, 2, 1, 6, 1, 2, 1, 10, 1, 6, 1, 2, 15, 2, 1, 6, 1, 10, 3, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 1, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 4, 15, 2, 1, 12, 1, 10, 3, 4, 1, 6, 5, 4, 3, 2, 1, 30, 1, 2, 3, 1, 1, 6, 1, 2, 1, 70, 1, 6, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 42, 5, 2, 3, 2, 1, 30, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2003

Keywords

Crossrefs

Programs

  • PARI
    A079893(n) = { my(x=1+omega(n)); for(k=1+n, oo, if(omega(k)==x, return(gcd(k,n)))); }; \\ Antti Karttunen, Mar 02 2023

A079894 a(n) = gcd(A079890(n), A079892(n)).

Original entry on oeis.org

2, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 14, 6, 6, 2, 3, 6, 1, 6, 3, 3, 1, 2, 1, 3, 4, 6, 33, 6, 33, 1, 42, 42, 42, 6, 38, 42, 42, 6, 2, 6, 2, 6, 6, 10, 1, 4, 50, 6, 4, 6, 1, 12, 3, 12, 3, 3, 62, 6, 62, 3, 3, 1, 66, 3, 1, 1, 70, 3, 2, 6, 74, 3, 3, 3, 78, 3, 2, 12, 2, 4, 85, 6, 2, 2, 2, 18, 91, 6, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2003

Keywords

Crossrefs

A218621 a(n) = unique divisor d of n such that d + (n/d - 1)/2 is minimal and integral.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 3, 16, 1, 2, 1, 4, 3, 2, 1, 8, 5, 2, 3, 4, 1, 6, 1, 32, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 16, 7, 10, 3, 4, 1, 6, 5, 8, 3, 2, 1, 4, 1, 2, 7, 64, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 5, 4, 7, 6, 1, 16, 9, 2, 1, 4, 5
Offset: 1

Views

Author

L. Edson Jeffery, Feb 18 2013

Keywords

Comments

Differs from A079891 starting at a(18).
For integers M, k, with 0<=k<=M, consider a representation of n as n = T(M) - T(M-k) = M + (M-1) + ... + (M-k+1), in which k is maximal, where T(r) = r*(r+1)/2 is the r-th triangular number. Then k = A109814(n), and M = A212652(n) = a(n) + (n/a(n) - 1)/2 is minimal.
Conjecture. For n, p, v, j natural numbers, the conditions on a(n) seem to be the following:
1. If n is an odd prime, then a(n) = 1.
2. If n is odd and composite, then
a(n) = max(p : p | n, p <= sqrt(n), p is a prime).
3. If n is equal to a power of 2, then a(n) = n.
4. If n = 2^j*v, with v odd, v>1 and j>1, then a(n) = 2^j.
5. If n = 2*v, with v odd and composite, then
a(n) = 2*p, where p is the least prime such that p | v.
6. If n = 2*p, for p an odd prime, then a(n) = 2.

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; mn = Infinity; best = 0; Do[q = i + (n/i - 1)/2; If[IntegerQ[q] && q < mn, mn = q; best = i], {i, d}]; best, {n, 100}] (* T. D. Noe, Feb 21 2013 *)
Showing 1-4 of 4 results.