cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079910 Solution to the Dancing School Problem with 5 girls and n+5 boys: f(5,n).

Original entry on oeis.org

1, 6, 46, 212, 738, 2104, 5150, 11196, 22162, 40688, 70254, 115300, 181346, 275112, 404638, 579404, 810450, 1110496, 1494062, 1977588, 2579554, 3320600, 4223646, 5314012, 6619538, 8170704, 10000750, 12145796, 14644962, 17540488, 20877854
Offset: 0

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X (g+h) with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

Crossrefs

Programs

  • Magma
    [1,6] cat [n^5-5*n^4+25*n^3-55*n^2+80*n-46: n in [2..30]]; // Vincenzo Librandi, Feb 17 2015
  • Mathematica
    CoefficientList[Series[(6 x^7 + 11 x^6 + 20 x^5 + 51 x^4 + 6 x^3 + 25 x^2 + 1) / (x - 1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 17 2015 *)
  • PARI
    Vec((6*x^7+11*x^6+20*x^5+51*x^4+6*x^3+25*x^2+1)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 04 2015
    

Formula

a(0)=1, a(1)=6, a(2)=46, a(n) = n^5 - 5*n^4 + 25*n^3 - 55*n^2 + 80*n - 46.
G.f.: (6*x^7 + 11*x^6 + 20*x^5 + 51*x^4 + 6*x^3 + 25*x^2 + 1) / (x-1)^6. - Colin Barker, Jan 04 2015
E.g.f.: 47 + 6*x + exp(x)*(-46 + 46*x + 20*x^3 + 5*x^4 + x^5). - Stefano Spezia, Dec 18 2019

Extensions

More terms from Benoit Cloitre, Jan 29 2003