cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079921 Solution to the Dancing School Problem with n girls and n+2 boys: f(n,2).

Original entry on oeis.org

3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, 1581, 2567, 4163, 6746, 10926, 17690, 28635, 46345, 75001, 121368, 196392, 317784, 514201, 832011, 1346239, 2178278, 3524546, 5702854, 9227431, 14930317, 24157781, 39088132, 63245948, 102334116, 165580101
Offset: 1

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
With offset 4, number of 132-avoiding two-stack sortable permutations which contain exactly one subsequence of type 123.

Crossrefs

Cf. Essentially the same as A001924.

Programs

  • Maple
    with(genfunc): Fz := 1/((-1+z)^2 * (1-z-z^2)); seq(rgf_term(Fz,z,n), n=1..30);
  • Mathematica
    CoefficientList[Series[(-z^3 + z^2 + 2*z - 3)/((z - 1)^2 (z^2 + z - 1)), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
    LinearRecurrence[{3,-2,-1,1},{3,7,14,26},40] (* Harvey P. Dale, Oct 17 2022 *)

Formula

a(n) = a(n-1)+a(n-2)+n+1, a(1)=3, a(2)=7.
G.f.: 1/((1-x)^2*(1-x-x^2)).
F(n+5) - n - 4, F(n) = A000045(n).
a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). - Wesley Ivan Hurt, Dec 03 2021

Extensions

More terms from Jaap Spies, Dec 15 2006