cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079934 Greedy frac multiples of sqrt(2): a(1)=1, Sum_{n>=0} frac(a(n)*x)=1 at x=sqrt(2).

Original entry on oeis.org

1, 3, 5, 10, 17, 29, 46, 99, 169, 268, 577, 985, 1562, 3363, 5741, 9104, 19601, 33461, 53062, 114243, 195025, 309268, 665857, 1136689, 1802546, 3880899, 6625109, 10506008, 22619537, 38613965, 61233502, 131836323, 225058681, 356895004, 768398401, 1311738121
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 20 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 10 since frac(1x) + frac(3x) + frac(5x) + frac(10x) < 1, while frac(1x) + frac(3x) + frac(5x) + frac(k*x) > 1 for all k > 5 and k < 10.
		

Crossrefs

Cf. A000129 (Pell numbers), A078343, A079935, A079936.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3*z + 5*z^2 + 4*z^3 - z^4 - z^5 - 13*z^6 + 2*z^9)/(1 - 6*z^3 + z^6), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
  • PARI
    x='x+O('x^50); Vec(x*(2*x^9 -13*x^6 -x^5 -x^4 +4*x^3 +5*x^2 +3*x +1)/(x^6-6*x^3 +1)) \\ G. C. Greubel, Sep 22 2017

Formula

For n > 0, a(3*n) = A000129(2*n+1).
a(3*n+2) = a(3*n) + A000129(2*n+2).
a(3*n+4) = a(3*n+2) + a(3*n+3).
a(3*n) = ceiling((3+2*sqrt(2))^n*(2+sqrt(2))/4).
a(3*n+2)/a(3*n+1) -> 1/sqrt(2).
a(3*n+1)/a(3*n) -> 3-sqrt(2).
a(3*n)/a(3*n-1) -> (8+5*sqrt(2))/7.
G.f.: x*(2*x^9 - 13*x^6 - x^5 - x^4 + 4*x^3 + 5*x^2 + 3*x + 1) / (x^6 - 6*x^3 + 1). - Colin Barker, Jun 16 2013