A079977 Fibonacci numbers interspersed with zeros.
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 8, 0, 13, 0, 21, 0, 34, 0, 55, 0, 89, 0, 144, 0, 233, 0, 377, 0, 610, 0, 987, 0, 1597, 0, 2584, 0, 4181, 0, 6765, 0, 10946, 0, 17711, 0, 28657, 0, 46368, 0, 75025, 0, 121393, 0, 196418, 0, 317811, 0, 514229, 0, 832040, 0, 1346269
Offset: 0
References
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics 4 (2010), 119-135.
- Ethan P. White, Richard K. Guy, and Renate Scheidler, Difference Necklaces, arXiv:2006.15250 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Crossrefs
Programs
-
Magma
A079977:= func< n | (1+(-1)^n)*Fibonacci(Floor((n+2)/2))/2 >; [A079977(n): n in [0..50]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
Riffle[Fibonacci[Range[50]],0] (* Harvey P. Dale, Dec 20 2015 *)
-
PARI
a(n)=if(n%2,0,fibonacci(n/2+1)) \\ Charles R Greathouse IV, Jun 11 2015
-
SageMath
def A079977(n): return ((n+1)%2)*fibonacci((n+2)//2) [A079977(n) for n in (0..50)] # G. C. Greubel, Jul 25 2022
Formula
Extensions
Editorial note: normally the alternate zeros are omitted from sequences like this. This entry is an exception. - N. J. A. Sloane
Comments