A289845 p-INVERT of A079977, where p(S) = 1 - S - S^2.
1, 2, 4, 9, 19, 43, 91, 202, 433, 952, 2055, 4494, 9737, 21236, 46099, 100403, 218164, 474833, 1032256, 2245929, 4883690, 10623848, 23103985, 50255443, 109298635, 237734446, 517055409, 1124617945, 2446001258, 5320100761, 11571106298, 25167245524, 54738437517
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -1, 1, -1, -2, 0, -1)
Programs
-
Mathematica
z = 60; s = -x/(x^4 + x^2 - 1); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079977 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (*A289845*) LinearRecurrence[{1,3,-1,1,-1,-2,0,-1},{1,2,4,9,19,43,91,202},40] (* Harvey P. Dale, Jan 16 2019 *)
Formula
G.f.: (1 + x - x^2 - x^4)/(1 - x - 3 x^2 + x^3 - x^4 + x^5 + 2 x^6 + x^8).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) + a(n-4) - a(n-5) - 2*a(n-6) - a(n-8).
Comments