cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080087 Number of factors of 5 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 9, 10, 12, 13, 14, 15, 16, 16, 18, 19, 20, 22, 24, 24, 25, 25, 26, 31, 32, 33, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 46, 47, 47, 51, 53, 55, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 69, 71, 75, 76, 76, 77, 81, 82, 84, 84, 86, 87, 89, 90
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

Highest power of 5 dividing prime(n)! = A039716(n), or also the number of trailing end 0's in A039716(n). - Lekraj Beedassy, Oct 31 2010

Crossrefs

Programs

  • Maple
    R:= NULL: v:= 0: p:= 0:
    for i from 1 to 100 do
       q:= p;
       p:= nextprime(p);
       v:= v + add(1+padic:-ordp(x,5), x = 1+floor(q/5) .. floor(p/5));
       R:= R,v;
    od:
    R; # Robert Israel, Sep 27 2023
  • Mathematica
    lst={};Do[p=Prime[n];s=0;While[p>1,p=IntegerPart[p/5];s+=p;];AppendTo[lst,s],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n) = valuation(prime(n)!, 5); \\ Michel Marcus, Jan 15 2015

Formula

a(n) = Sum_{k=1..L} floor(prime(n)/5^k), where L = log(p_n)/log(5).
a(n) = A112765(A039716(n)). - Michel Marcus, Sep 28 2023