cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080097 a(n) = Fibonacci(n+2)^2 - 1.

Original entry on oeis.org

0, 3, 8, 24, 63, 168, 440, 1155, 3024, 7920, 20735, 54288, 142128, 372099, 974168, 2550408, 6677055, 17480760, 45765224, 119814915, 313679520, 821223648, 2149991423, 5628750624, 14736260448, 38580030723, 101003831720
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 29 2003

Keywords

Comments

a(n), a(n)+1 and a(n)+2 are consecutive members of A049997.

Crossrefs

Programs

Formula

If n is odd, then a(n) = F(n+1)*F(n+3) = F(n)*F(n+4) - 2, else a(n) = F(n)*F(n+4) = F(n+1)*F(n+3) - 2, where F(n) = Fibonacci numbers (A000045).
a(n) = (Lucas(2*n+4) - 2*(-1)^n - 5)/5.
O.g.f.: x*(3-x)/((1-x^2)*(1-3*x+x^2)) (see a comment on A080144). - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{k=1..n} F(k+3)*F(k) = A027941(n) + 2*A001654(n), n>=0. - Wolfdieter Lang, Jul 27 2012
Sum_{n>=1} 1/a(n) = (43 - 15*sqrt(5))/18 = 29/9 - 5*phi/3, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 20 2020
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Joerg Arndt, Nov 13 2023

Extensions

Edited by Ralf Stephan, May 15 2005