A080100 a(n) = 2^(number of 0's in binary representation of n).
1, 1, 2, 1, 4, 2, 2, 1, 8, 4, 4, 2, 4, 2, 2, 1, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 64, 32, 32, 16, 32, 16, 16, 8, 32, 16, 16, 8, 16, 8, 8, 4, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a080100 n = a080100_list !! n a080100_list = 1 : zs where zs = 1 : (concat $ transpose [map (* 2) zs, zs]) -- Reinhard Zumkeller, Aug 27 2014, Mar 07 2011
-
Maple
a:= n-> 2^add(1-i, i=Bits[Split](n)): seq(a(n), n=0..93); # Alois P. Heinz, Aug 18 2025
-
Mathematica
f[n_] := 2^DigitCount[n, 2, 0]; f[0] = 1; Array[f, 94, 0] (* Robert G. Wilson v *)
-
PARI
a(n)=if(n<1,n==0,(2-n%2)*a(n\2))
-
PARI
a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=subst(A,x,x^2)*(2+x)-1); polcoeff(A,n))
-
Python
def A080100(n): return 1<
Chai Wah Wu, Aug 18 2025
Formula
G.f. satisfies: F(x^2) = (1+F(x))/(x+2). - Ralf Stephan, Jun 28 2003
a(2n) = 2a(n), n>0. a(2n+1) = a(n). - Ralf Stephan, Apr 29 2003
a(n) = sum(k=0, n, C(n+k, k) mod 2). - Benoit Cloitre, Mar 06 2004
a(n) = sum(k=0, n, C(2n-k, n) mod 2). - Paul Barry, Dec 13 2004
G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 2)]*x^n, where A(x)^n (mod 2) reduces all coefficients modulo 2 to {0,1}. - Paul D. Hanna, Nov 14 2012
Extensions
Keyword base added by Rémy Sigrist, Jan 18 2018
Comments