A080107 Number of fixed points of permutation of SetPartitions under {1,2,...,n}->{n,n-1,...,1}. Number of symmetric arrangements of non-attacking rooks on upper half of n X n chessboard.
1, 1, 2, 3, 7, 12, 31, 59, 164, 339, 999, 2210, 6841, 16033, 51790, 127643, 428131, 1103372, 3827967, 10269643, 36738144, 102225363, 376118747, 1082190554, 4086419601, 12126858113, 46910207114, 143268057587, 566845074703, 1778283994284, 7186474088735
Offset: 0
Keywords
Examples
Of the set partitions of 4, the following 7 are invariant under 1->4, 2->3, 3->2, 4->1: {{1,2,3,4}}, {{1,2},{3,4}}, {{1,4},{2,3}}, {{1,3},{2,4}}, {{1},{2,3},{4}}, {{1,4},{2},{3}}, {{1},{2},{3},{4}}, so a(4)=7. For a(4)=7, the row patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD (same as previous example). The loop patterns are AAAA, AAAB, AABB, AABC, ABAB, ABAC, and ABCD. - _Robert A. Russell_, Apr 23 2018 From _Gus Wiseman_, Feb 13 2019: (Start) The a(1) = 1 through a(5) = 12 self-complementary set partitions: {{1}} {{12}} {{123}} {{1234}} {{12345}} {{1}{2}} {{13}{2}} {{12}{34}} {{1245}{3}} {{1}{2}{3}} {{13}{24}} {{135}{24}} {{14}{23}} {{15}{234}} {{1}{23}{4}} {{1}{234}{5}} {{14}{2}{3}} {{12}{3}{45}} {{1}{2}{3}{4}} {{135}{2}{4}} {{14}{25}{3}} {{15}{24}{3}} {{1}{24}{3}{5}} {{15}{2}{3}{4}} {{1}{2}{3}{4}{5}} (End)
References
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 765).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 18.
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
- S. V. Pemmaraju and S. S. Skiena, The New Combinatorica, 2001.
- Frank Ruskey, Set Partitions
Crossrefs
Programs
-
Mathematica
<
Range[n, 1, -1]]; t= 1 + RankSetPartition /@ t; t= ToCycles[t]; t= Cases[t, {_Integer}]; Length[t], {n, 7}] (* second program: *) QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[cc = CoefficientList[QB[n, q], q]; cc.Table[(-1)^(k+1), {k, 1, Length[cc]}], {n, 0, 30}] (* Jean-François Alcover, Feb 29 2016, after Paul D. Hanna *) (* Ach[n, k] is the number of achiral color patterns for a row or loop of n colors containing exactly k different colors *) Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] Table[Sum[Ach[n, k], {k, 0, n}], {n, 0, 30}] (* Robert A. Russell, Apr 23 2018 *) x[n_] := x[n] = If[n < 2, n+1, 2x[n-1] + (n-1)x[n-2]]; (* A005425 *) Table[Sum[StirlingS2[Ceiling[n/2], k] x[k-Mod[n, 2]], {k, 0, Ceiling[n/2]}], {n, 0, 30}] (* Robert A. Russell, Apr 27 2018, after Knuth reference *)
Formula
Knuth gives recurrences and generating functions.
a(n) = Sum_{k=0..t(n)} (-1)^k*A125810(n,k) where A125810 is a triangle of coefficients for a q-analog of the Bell numbers and t(n)=A125811(n)-1. - Paul D. Hanna, Jan 19 2009
From Robert A. Russell, Apr 23 2018: (Start)
a(n) = Sum_{k=0..n} Ach(n,k) where
Ach(n,k) = [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) + [n<2]*[n==k]*[n>=0].
Extensions
Offset set to 0 by Alois P. Heinz, May 23 2015
Comments