cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080224 Number of abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)>2*d (sigma = A000203)
a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - Reinhard Zumkeller, Dec 27 2003

Examples

			Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
		

Crossrefs

Programs

Formula

a(n) + A080225(n) + A080226(n) = A000005(n).
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d).
a(n) = A294929(n) + A294937(n).
a(n) = 1 iff A294930(n) = 1.
(End)