A080224 Number of abundant divisors of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
Offset: 1
Keywords
Examples
Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Abundant Number.
Crossrefs
Programs
-
Maple
A080224 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if numtheory[sigma](d) > 2*d then a := a+1 ; end if; end do: a; end proc: seq(A080224(n),n=1..80) ; # R. J. Mathar, Feb 22 2021
-
Mathematica
Table[Count[Divisors[n],?(DivisorSigma[1,#]>2#&)],{n,110}] (* _Harvey P. Dale, Jun 14 2013 *)
-
PARI
a(n) = sumdiv(n, d, sigma(d)>2*d) \\ Michel Marcus, Mar 09 2013
Comments