cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080247 Formal inverse of triangle A080246. Unsigned version of A080245.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 22, 16, 6, 1, 90, 68, 30, 8, 1, 394, 304, 146, 48, 10, 1, 1806, 1412, 714, 264, 70, 12, 1, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 206098
Offset: 0

Views

Author

Paul Barry, Feb 15 2003

Keywords

Comments

Row sums are little Schroeder numbers A001003. Diagonal sums are generalized Fibonacci numbers A006603. Columns include A006318, A006319, A006320, A006321.
T(n,k) is the number of dissections of a convex (n+3)-gon by nonintersecting diagonals with exactly k diagonals emanating from a fixed vertex. Example: T(2,1)=4 because the dissections of the convex pentagon ABCDE having exactly one diagonal emanating from the vertex A are: {AC}, {AD}, {AC,EC} and {AD,BD}. - Emeric Deutsch, May 31 2004
For more triangle sums, see A180662, see the Schroeder triangle A033877 which is the mirror of this triangle. - Johannes W. Meijer, Jul 15 2013

Examples

			Triangle starts:
[0]    1
[1]    2,    1
[2]    6,    4,   1
[3]   22,   16,   6,   1
[4]   90,   68,  30,   8,  1
[5]  394,  304, 146,  48, 10,  1
[6] 1806, 1412, 714, 264, 70, 12, 1
...
From _Gary W. Adamson_, Jul 25 2011: (Start)
n-th row = top row of M^n, M = the following infinite square production matrix:
  2, 1, 0, 0, 0, ...
  2, 2, 1, 0, 0, ...
  2, 2, 2, 1, 0, ...
  2, 2, 2, 2, 1, ...
  ... (End)
		

Crossrefs

Cf. A000007, A033877 (mirror), A084938.

Programs

  • Maple
    A080247:=(n,k)->(k+1)*add(binomial(n+1,k+j+1)*binomial(n+j,j),j=0..n-k)/(n+1):
    seq(seq(A080247(n,k),k=0..n),n=0..9);
  • Mathematica
    Clear[w] w[n_, k_] /; k < 0 || k > n := 0 w[0,0]=1 ; w[n_, k_] /; 0 <= k <= n && !n == k == 0 := w[n, k] = w[n-1,k-1] + w[n-1,k] + w[n,k+1] Table[w[n,k],{n,0,10},{k,0,n}] (* David Callan, Jul 03 2006 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Jan 08 2018 *)
  • Maxima
    T(n,k):=((k+1)*sum(2^m*binomial(n+1,m)*binomial(n-k-1,n-k-m),m,0,n-k))/(n+1); /* Vladimir Kruchinin, Jan 10 2022 */
  • Sage
    def A080247_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k)*prec(n, k) for k in (1..n)]
    for n in (1..10): print(A080247_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 2/(2+y*x-y+y*(x^2-6*x+1)^(1/2))/y/x. - Vladeta Jovovic, Feb 16 2003
Essentially same triangle as triangle T(n,k), n > 0 and k > 0, read by rows; given by [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.
T(n, k) = T(n-1, k-1) + 2*Sum_{j>=0} T(n-1, k+j) with T(0, 0) = 1 and T(n, k)=0 if k < 0. - Philippe Deléham, Jan 19 2004
T(n, k) = (k+1)*Sum_{j=0..n-k} (binomial(n+1, k+j+1)*binomial(n+j, j))/(n+1). - Emeric Deutsch, May 31 2004
Recurrence: T(0,0)=1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1). - David Callan, Jul 03 2006
T(n, k) = binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], -1). - Peter Luschny, Jan 08 2018
T(n,k) = (k+1)/(n+1)*Sum_{m=0..n-k} 2^m*binomial(n+1,m)*binomial(n-k-1,n-k-m). - Vladimir Kruchinin, Jan 10 2022
From Peter Bala, Sep 16 2024: (Start)
Riordan array (S(x), x*S(x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the g.f. of the large Schröder numbers A006318.
For integer m and n >= 1, (m + 2)*[x^n] S(x)^(m*n) = m*[x^n] (1/S(-x))^((m+2)*n). For cases of this identity see A103885 (m = 1), A333481 (m = 2) and A370102 (m = 3). (End)