cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113277 Expansion of q^(-1/3) * eta(q^2)^5 / eta(q)^2 in powers of q.

Original entry on oeis.org

1, 2, 0, 0, 0, -4, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -17, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - 4*x^5 - 5*x^8 + 7*x^16 + 8*x^21 - 10*x^33 - 11*x^40 + 13*x^56 + ...
G.f. = q + 2*q^4 - 4*q^16 - 5*q^25 + 7*q^49 + 8*q^64 - 10*q^100 - 11*q^121 +...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^5/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if(issquare( 3*n + 1, &n), n * (-1)^(n%3 + n), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod (k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( e%2, 0, (-1)^(p==2) * (-(-1)^(p%3) * p)^(e/2)))))};

Formula

a(n) = b(3*n + 1) where b(n) is multiplicative and a(p^e) = 0 if e is odd, a(3^e) = 0^e, a(2^e) = -(-2)^(e/2), a(p^e) = p^(e/2) if p == 1 (mod 3), a(p^e) = (-p)^(e/2) if p == 2 (mod 3).
Euler transform of period 2 sequence [ 2, -3, ...].
G.f.: Sum_{k} (3*k + 1) * (-x)^(3*k^2 + 2*k) = Product_{k>0} (1 - x^k)^3 * (1 + x^k)^5.
Expansion of psi(x^2) * f(x)^2 = phi(x) * f(-x^4)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3456^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A080332.
a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 4) = a(8*n + 4) = 0. a(25*n + 8) = -5 * a(n). A114855(n) = (-1)^n * a(n). a(4*n + 1) = 2 * A114855(n). a(8*n) = A080332(n).
G.f.: Product_{n >= 1} (1 - q^(4*n))^3 * (1 + q^(4*n-1))^2 * (1 - q^(4*n-2)) * (1 + q^(4*n-3))^2 = Product_{n >= 1} (1 - q^(4*n))^3 * (1 - q^(4*n-1))^(-2) * (1 - q^(4*n-2))^3 * (1 - q^(4*n-3))^(-2). - Peter Bala, Jun 07 2025

A360191 G.f. 1 / Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2.

Original entry on oeis.org

1, 5, 18, 55, 149, 371, 867, 1923, 4086, 8374, 16634, 32152, 60669, 112041, 202943, 361200, 632647, 1091917, 1859225, 3126242, 5195715, 8541624, 13899866, 22404091, 35787815, 56683294, 89061028, 138872410, 214984454, 330532633, 504869316, 766357010, 1156355165
Offset: 0

Views

Author

Paul D. Hanna, Jan 29 2023

Keywords

Comments

Self-convolution inverse of A080332.

Examples

			G.f.: A(x) = 1 + 5*x + 18*x^2 + 55*x^3 + 149*x^4 + 371*x^5 + 867*x^6 + 1923*x^7 + 4086*x^8 + 8374*x^9 + 16634*x^10 + 32152*x^11 + 60669*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1 - x^k)^3 * (1 - x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
    nmax = 30; CoefficientList[Series[1/(QPochhammer[x] * EllipticTheta[4, 0, x]^2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
  • PARI
    {a(n) = polcoeff( 1/prod(m=1,n, (1 - x^m)^3 * (1 - x^(2*m-1))^2 +x*O(x^n)), n)}
    for(n=0,32,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(!) A(x) = 1 / [Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2].
(2) A(x) = 1 / [Sum_{n=-oo..+oo} (6*n + 1) * x^(n*(3*n + 1)/2)].
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (12*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Feb 07 2023

A114855 Expansion of q^(-1/3) * (eta(q) * eta(q^4))^2 / eta(q^2) in powers of q.

Original entry on oeis.org

1, -2, 0, 0, 0, 4, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -17, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 01 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 4*x^5 - 5*x^8 + 7*x^16 - 8*x^21 + 10*x^33 - 11*x^40 + ...
G.f. = q - 2*q^4 + 4*q^16 - 5*q^25 + 7*q^49 - 8*q^64 + 10*q^100 - 11*q^121 + ...
		

References

  • S. Ramanujan, On Certain Arithmetical Functions. Collected Papers of Srinivasa Ramanujan, p. 147, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 266. MR0099904 (20 #6340)

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma1(36), 3/2), 300); A[1] - 2*A[4]; /* Michael Somos, Mar 11 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Mar 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}];  (* Michael Somos, Mar 11 2015 *)
    a[ n_] := With[{m = Sqrt[3 n + 1]}, If[ IntegerQ[ m], -m (-1)^Mod[ m, 3], 0]]; (* Michael Somos, Mar 11 2015 *)
  • PARI
    {a(n) = if( issquare( 3*n + 1, &n), n * -(-1)^(n%3), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( e%2, 0, (-(-1)^(p%3) * p)^(e/2) )))) };
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A))^2 / eta(x^2 + A), n))};
    

Formula

Expansion of psi(x^2) * f(-x)^2 = phi(-x) * f(-x^4)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ -2, -1, -2, -3, ...].
a(n) = b(3*n + 1) where b(n) is multiplicative and a(p^e) = 0 if e is odd, a(3^e) = 0^e, a(p^e) = p^(e/2) if p == 1 (mod 3), a(p^e) = (-p)^(e/2) if p == 2 (mod 3).
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = (u*w * (u + 2*w) * (u + 4*w))^2 - v^6 * (u^2 + 4*u*w + 8*w^2).
G.f.: Sum_{k} (3*k + 1) * x^(3*k^2 + 2*k) = Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k)) * (1 - x^(4*k)).
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0. a(4*n + 1) = -2 * a(n). 2 * a(n) = A113277(4*n + 1) = - A114855(4*n + 1).
(-1)^n * a(n) = A113277(n). a(8*n) = A080332(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6^(3/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 11 2015

A134756 Coefficients of a q-series of Zagier related to the Dedekind eta function.

Original entry on oeis.org

1, -5, -7, 0, 0, 11, 0, 13, 0, 0, 0, 0, -17, 0, 0, -19, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, -29, 0, 0, 0, 0, -31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 47, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 08 2007

Keywords

Comments

Obtained by formally "differentiating the Dedekind eta-function half a time".

Examples

			G.f. = 1 - 5*x - 7*x^2 + 11*x^5 + 13*x^7 - 17*x^12 - 19*x^15 + 23*x^22 + ...
G.f. = q - 5*q^25 - 7*q^49 + 11*q^121 + 13*q^169 - 17*q^289 - 19*q^361 + ...
		

Crossrefs

Cf. A010815.
Apart from signs, same as A080332, A116916 and A133079. - N. J. A. Sloane, Nov 11 2007

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ @ m, m KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Oct 15 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (If[ # < 5, 0, (1 - Mod[#2, 2]) (# KroneckerSymbol[ 12, #])^(#2/2)] & @@@ FactorInteger[ 24 n + 1])]; (* Michael Somos, Oct 15 2015 *)
    s = QPochhammer[q] + O[q]^100; A010815 = CoefficientList[s, q]; nn = Range[0, Length[A010815]-1]; A134756 = Sqrt[24*nn+1]*A010815 (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( issquare( 24*n+1, &n), n * kronecker( 12, n), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n+1); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, (kronecker( 12, p) * p)^(e\2))))};

Formula

a(n) = b(24*n + 1) where b() is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 11 (mod 12), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 12).
G.f.: Sum_{k>0} Kronecker(12, k) * k * x^((k^2 - 1) / 24).
a(n) = sqrt(24*n + 1) * A010815(n).

A178902 Expansion of q^(-1/24) * eta(q^2)^13 / (eta(q)^5 * eta(q^4)^5) in powers of q.

Original entry on oeis.org

1, 5, 7, 0, 0, 11, 0, -13, 0, 0, 0, 0, -17, 0, 0, -19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, -37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 21 2010

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*x + 7*x^2 + 11*x^5 - 13*x^7 - 17*x^12 - 19*x^15 - 23*x^22 + ...
G.f. = q + 5*q^25 + 7*q^49 + 11*q^121 - 13*q^169 - 17*q^289 - 19*q^361 + ...
		

Crossrefs

Apart from signs, same as A080332, A116916, A133079 and A134756.

Programs

  • Mathematica
    A178902[n_] := SeriesCoefficient[(QPochhammer[-q, -q]/QPochhammer[q, -q])^3/QPochhammer[-q, q^2], {q, 0, n}]; Table[A178902[n], {n, 0, 50}] (* G. C. Greubel, Aug 17 2017 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m KroneckerSymbol[ -6, m], 0]]; (* Michael Somos, Apr 27 2018 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^13 / (QPochhammer[ x] QPochhammer[ x^4])^5, {x, 0, n}]; (* Michael Somos, Apr 27 2018 *)
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -6, n), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%24<12, p, -p)^(e\2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 / (eta(x + A)^5 * eta(x^4 + A)^5), n))};

Formula

Expansion of f(q) * phi(q)^2 = f(q)^3 * chi(q)^2 = phi(q)^3 / chi(q) in powers of q where f(), phi(), chi() are Ramanujan theta functions.
Euler transform of period 4 sequence [5, -8, 5, -3, ...].
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(3/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 + x^(2*k - 1))^5 = Sum_{k>0} Kronecker( -6, k) * k * x^((k^2 - 1) / 24) = Sum_{k in Z} (6*k + 1) * (-1)^floor(k/2) * x^(k * (3*k + 1) / 2).
a(n) = (-1)^n * A080332(n).
Showing 1-5 of 5 results.