A080333 Partial sums of A080278.
1, 2, 6, 7, 8, 12, 13, 14, 27, 28, 29, 33, 34, 35, 39, 40, 41, 54, 55, 56, 60, 61, 62, 66, 67, 68, 108, 109, 110, 114, 115, 116, 120, 121, 122, 135, 136, 137, 141, 142, 143, 147, 148, 149, 162, 163, 164, 168, 169, 170, 174, 175, 176, 216, 217, 218, 222, 223, 224, 228, 229
Offset: 1
Keywords
Links
- Klaus Brockhaus, Illustration of A080278 and A080333
- B. Dearden, J. Iiams, and J. Metzger, A Function Related to the Rumor Sequence Conjecture , J. Int. Seq. 14 (2011) # 11.2.3.
Programs
-
PARI
a(n) = fromdigits(Vec(Pol(digits(3*n,3))'),3); \\ Kevin Ryde, Apr 29 2021
Formula
a(n) = Sum_{k=0..log_3(n)} 3^k*floor(n/3^k).
a(3^k) = (k+1)*3^k.
a(n) is conjectured to be asymptotic to n*log(n)/log(3). - Klaus Brockhaus, Mar 23 2003 [This follows from the asymptotics of A333979. - Pontus von Brömssen, Sep 06 2020]
a(n) = n + 3*a(floor(n/3)), a(0)=0. - Vladeta Jovovic, Aug 06 2003
G.f.: (1/(1 - x))*Sum_{k>=0} 3^k*x^(3^k)/(1 - x^(3^k)). - Ilya Gutkovskiy, Mar 15 2018
a(n) = A333979(3*n,3). - Pontus von Brömssen, Sep 06 2020