cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011541 Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.

Original entry on oeis.org

2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite: Fermat proved that numbers expressible as a sum of two positive integral cubes in n different ways exist for any n. Hardy and Wright give a proof in Theorem 412 of An Introduction of Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition).
A001235 gives another definition of "taxicab numbers".
David W. Wilson reports a(6) <= 8230545258248091551205888. [But see next line!]
Randall L Rathbun has shown that a(6) <= 24153319581254312065344.
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, 2003, show that with high probability, a(6) = 24153319581254312065344.
When negative cubes are allowed, such terms are called "Cabtaxi" numbers, cf. Boyer's web page, Wikipedia or MathWorld. - M. F. Hasler, Feb 05 2013
a(7) <= 24885189317885898975235988544. - Robert G. Wilson v, Nov 18 2012
a(8) <= 50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3. - PoChi Su, May 16 2013
a(9) <= 136897813798023990395783317207361432493888. - PoChi Su, May 17 2013
From PoChi Su, Oct 09 2014: (Start)
The preceding bounds are not the best that are presently known.
An upper bound for a(22) was given by C. Boyer (see the C. Boyer link), namely
BTa(22)= 2^12 *3^9 * 5^9 *7^4 *11^3 *13^6 *17^3 *19^3 *31^4 *37^4 *43 *61^3 *73 *79^3 *97^3 *103^3 *109^3 *127^3 *139^3 *157 *181^3 *197^3 *397^3 *457^3 *503^3 *521^3 *607^3 *4261^3.
We also know that (97*491)^3*BTa(22) is an upper bound on a(23), corresponding to the sum x^3+y^3 with
x=2^5 *3^4 *5^3 *7 *11 *13^2 *17 *19^2 *31 *37 *61 *79 *103 *109 *127 *139 *181 *197 *397 *457 *503 *521 *607 *4261 *11836681,
y=2^4 *3^3 *5^3 *7 *11 *13^2 *17 *19 *31 *37 *61 *79 *89 *103 *109 *127 *139 *181 *197 *397 * 457 *503 * 521 *607 *4261 *81929041.
(End)
Conjecture: the number of distinct prime factors of a(n) is strictly increasing as n grows (this is not true if a(7) is equal to the upper bound given above), but never exceeds 2*n. - Sergey Pavlov, Mar 01 2017

Examples

			From _Zak Seidov_, Mar 22 2013: (Start)
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
		

References

  • C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
  • R. K. Guy, Unsolved Problems in Number Theory, D1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.

Crossrefs

Cf. A001235, A003826, A023050, A047696, A080642 (cubefree taxicab numbers).

Formula

a(n) <= A080642(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024

Extensions

Added a(6), confirmed by Uwe Hollerbach, communicated by Christian Schroeder, Mar 09 2008

A272885 Cubefree taxi-cab numbers.

Original entry on oeis.org

1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603
Offset: 1

Views

Author

Altug Alkan, May 08 2016

Keywords

Comments

Taxi-cab numbers (A001235) that are not divisible by any cube > 1.
A080642 belongs to another version that A011541 focuses on.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...

Examples

			195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
		

Crossrefs

A230564 Rational rank of the n-th taxicab elliptic curve x^3 + y^3 = A011541(n).

Original entry on oeis.org

0, 2, 4, 5, 4
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

Guy, 2004: "Andrew Bremner has computed the rational rank of the elliptic curve x^3 + y^3 = Taxicab(n) as equal to 2, 4, 5, 4 for n = 2, 3, 4, 5, respectively."
Abhinav Kumar computed that a(1) = 0 (see the MathOverflow link for details). But Euler and Legendre scooped him (see the next comment).
Noam D. Elkies: "... the fact that x^3+y^3=2 has no [rational] solutions other than x=y=1 is attributed by Dickson to Euler himself: see Dickson's History of the Theory of Numbers (1920) Vol.II, Chapter XXI "Numbers the Sum of Two Rational Cubes", page 572. The reference (footnote 182) is "Algebra, 2, 170, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491". In the next page Dickson also refers to work of Legendre that includes this result (footnote 184: "Théorie des nombres, Paris, 1798, 409; ...")." See the MathOverflow link for further comments from Elkies.

Examples

			rank(x^3 + y^3 = 2) = 0.
rank(x^3 + y^3 = 1729) = 2.
rank(x^3 + y^3 = 87539319) = 4.
rank(x^3 + y^3 = 6963472309248) = 5.
rank(x^3 + y^3 = 48988659276962496) = 4.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, D1.

Crossrefs

Formula

a(n) = A060838(A011541(n)).
Showing 1-3 of 3 results.