A080674 a(n) = (4/3)*(4^n - 1).
0, 4, 20, 84, 340, 1364, 5460, 21844, 87380, 349524, 1398100, 5592404, 22369620, 89478484, 357913940, 1431655764, 5726623060, 22906492244, 91625968980, 366503875924, 1466015503700, 5864062014804, 23456248059220, 93824992236884, 375299968947540, 1501199875790164
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..170
- Peter Bala, A characterization of A002450, A020988 and A080674.
- Mattia Fregola, Cellular Automata RULE13 generating OEIS sequence A080674
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Magma
[(4/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
-
Mathematica
Table[4*(4^n-1)/3,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *) LinearRecurrence[{5,-4},{0,4},40] (* Harvey P. Dale, May 05 2018 *)
-
PARI
vector(100, n, n--; (4/3)*(4^n-1)) \\ Altug Alkan, Oct 11 2015
-
PARI
Vec(4*x/((x-1)*(4*x-1)) + O(x^40)) \\ Colin Barker, Oct 12 2015
Formula
a(n) = Sum_{i = 1..n} 4^i. - Adam McDougall (mcdougal(AT)stolaf.edu), Sep 29 2004
a(n) = 4*a(n-1) + 4. - Alexandre Wajnberg, Apr 25 2005
a(n) = 4^n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Oct 12 2015: (Start)
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: 4*x / ((x-1)*(4*x-1)). (End)
E.g.f.: 4*exp(x)*(exp(3*x) - 1)/3. - Elmo R. Oliveira, Dec 17 2023
Comments