A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.
1, 2, 3, 4, 5, 7, 6, 11, 13, 8, 10, 17, 9, 19, 14, 23, 29, 12, 15, 22, 31, 37, 26, 41, 21, 43, 16, 20, 25, 34, 47, 53, 18, 33, 38, 59, 61, 28, 35, 46, 67, 39, 71, 58, 73, 79, 24, 30, 44, 51, 55, 62, 83, 49, 89, 74, 97, 27, 57, 101, 52, 65, 82
Offset: 1
Examples
a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36) From _Gus Wiseman_, Sep 05 2018: (Start) Triangle begins: 1 2 3 4 5 7 6 11 13 8 10 17 9 19 14 23 29 12 15 22 31 37 26 41 21 43 16 20 25 34 47 Corresponding triangle of factorizations begins: (), (2), (3), (2*2), (4), (5), (2*3), (6), (7), (2*2*2), (2*4), (8), (3*3), (9), (2*5), (10), (11), (2*2*3), (3*4), (2*6), (12). (End)
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
Crossrefs
Programs
-
Haskell
a080688 n k = a080688_row n !! (k-1) a080688_row n = map (+ 1) $ take (a001055 n) $ elemIndices n $ map fromInteger a064553_list a080688_tabl = map a080688_row [1..] a080688_list = concat a080688_tabl -- Reinhard Zumkeller, Oct 01 2012
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)
Extensions
More terms from Sean A. Irvine, Oct 05 2011
Keyword tabf added and definition complemented accordingly by Reinhard Zumkeller, Oct 01 2012
Comments