cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A129305 Encodes multisets of least prime signatures in reverse-lex order: replace A036035 with A080688 then calculate all possible factorizations of the resulting values, recode each factor using A064553(n) and then multiply the terms.

Original entry on oeis.org

1, 2, 4, 5, 6, 11, 8, 10, 17, 12, 15, 22, 31, 42, 69, 77, 86, 109, 16, 20, 25, 34, 47, 24, 30, 44, 55, 51, 62, 83, 36, 45, 66, 76, 95, 121, 93, 118, 149, 84, 105, 138, 154, 172, 215, 253, 201, 217, 218, 277, 546, 834, 861, 897, 994, 1001, 1118, 1529, 1633, 1763, 1041
Offset: 0

Views

Author

Alford Arnold, May 02 2007

Keywords

Comments

Sequence A035310 counts the values in each subtable and illustrates relationships with A000041, A000079, A000110 etc. Sequence A096443 counts the values associated with each least prime signature. (Cf. A025487 and A036035.)

Examples

			The encoded values can be arranged in tabular form based on the number of factors and the associated numeric partitions as indicated below:
2..................................................
.....4.....5........................................
.....6.....11........................................
...............8.....10.....17.........................
...............12....15.....31.........................
.....................22..............................
...............42....69.....109.........................
.....................77..............................
.....................86..............................
.................................16.....20.....25.....34.....47
.................................24.....30.....55.....51.....83
........................................44............62.....
.................................36.....45.....95.....93.....149
........................................66.....121...118.....
........................................76...............
.................................84.....105.....215.....201.....277
........................................138.....253.....217.....
........................................154.............218.....
........................................172...............
................................546.....834.....1529.....1041.....1289
........................................861.....1633.....1138.....
........................................897.....1763.....1253.....
........................................994..............1417.....
........................................1001...............
........................................1118...............
		

Crossrefs

A035310 Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors.

Original entry on oeis.org

1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926
Offset: 1

Views

Author

Keywords

Comments

Ways of partitioning an n-multiset with multiplicities some partition of n.
Number of multiset partitions of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. The (weakly) normal version is A255906. - Gus Wiseman, Dec 31 2019

Examples

			a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12.
From _Gus Wiseman_, Dec 31 2019: (Start)
The a(1) = 1 through a(3) = 12 multiset partitions of strongly normal multisets:
  {{1}}  {{1,1}}    {{1,1,1}}
         {{1,2}}    {{1,1,2}}
         {{1},{1}}  {{1,2,3}}
         {{1},{2}}  {{1},{1,1}}
                    {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,1}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
(End)
		

Crossrefs

Sequence A035341 counts the ordered cases. Tables A093936 and A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147.
Row sums of A317449.
The uniform case is A317584.
The case with empty intersection is A317755.
The strict case is A317775.
The constant case is A047968.
The set-system case is A318402.
The case of strict parts is A330783.
Multiset partitions of integer partitions are A001970.
Unlabeled multiset partitions are A007716.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    b:= proc(n, i, l)
          `if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))$2),
          `if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=1..10);  # Alois P. Heinz, May 26 2013
  • Mathematica
    g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime, prime
    from operator import mul
    @cacheit
    def g(n, k):
        return (0 if n > k else 1) + (0 if isprime(n) else sum(g(n//d, d) for d in divisors(n)[1:-1] if d <= k))
    @cacheit
    def b(n, i, l):
        if n==0:
            p = reduce(mul, (prime(t + 1)**l[t] for t in range(len(l))))
            return g(p, p)
        else:
            return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in range(n//i + 1)])
    def a(n):
        return b(n, n, [])
    for n in range(1, 11): print(a(n)) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Extensions

More terms from Erich Friedman.
81199 from Alford Arnold, Mar 04 2008
a(10) from Alford Arnold, Mar 31 2008
a(10) corrected by Alford Arnold, Aug 07 2008
a(11)-a(13) from Alois P. Heinz, May 26 2013
a(14) from Alois P. Heinz, Sep 27 2014
a(15) from Alois P. Heinz, Jan 10 2015
Terms a(16) and beyond from Andrew Howroyd, Dec 30 2020

A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 4, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 9, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48:
  2  4    8      5*12     16       4*9      32         48
     2*2  2*4    3*20     4*4      3*12     4*8        4*12
          2*2*2  3*4*5    2*8      3*3*4    2*16       3*16
                 2*2*3*5  2*2*4    2*18     2*4*4      3*4*4
                          2*2*2*2  2*2*9    2*2*8      2*24
                                   2*2*3*3  2*2*2*4    2*3*8
                                            2*2*2*2*2  2*2*12
                                                       2*2*3*4
                                                       2*2*2*2*3
		

Crossrefs

A327523 is the case when n is restricted to belong to A130091 also.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty chains of divisors.
A281116 counts factorizations with no common divisor.
A302696 lists numbers whose prime indices are pairwise coprime.
A305149 counts stable factorizations.
A320439 counts factorizations using A289509.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A336568 = not a product of two numbers with distinct prime multiplicities.
A336569 counts maximal chains of elements of A130091.
A337256 counts chains of divisors.

Programs

  • Mathematica
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}]

A064553 a(1) = 1, a(prime(i)) = i + 1 for i > 0 and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 8, 9, 8, 6, 12, 7, 10, 12, 16, 8, 18, 9, 16, 15, 12, 10, 24, 16, 14, 27, 20, 11, 24, 12, 32, 18, 16, 20, 36, 13, 18, 21, 32, 14, 30, 15, 24, 36, 20, 16, 48, 25, 32, 24, 28, 17, 54, 24, 40, 27, 22, 18, 48, 19, 24, 45, 64, 28, 36, 20, 32, 30, 40, 21, 72, 22, 26
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

a(n) <= n for all n and a(x) = x iff x = 2^i * 3^j for i, j >= 0: a(A003586(n)) = A003586(n) for n > 0. By definition a is completely multiplicative and also surjective. a(p) < a(q) for primes p < q.
Completely multiplicative with a(prime(i)) = i + 1. - Charles R Greathouse IV, Sep 07 2012
a(A080688(n,k)) = A080444(n,k) = n for k=1..A001055(n). - Reinhard Zumkeller, Oct 01 2012

Examples

			a(5) = a(prime(3)) = 3 + 1 = 4; a(14) = a(2*7) = a(prime(1)* prime(4)) = (1+1)*(4+1) = 10.
		

Crossrefs

Programs

  • Haskell
    a064553 1 = 1
    a064553 n = product $ map ((+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Feb 17 2012, Jan 28 2011
    
  • Maple
    A064553 := proc(n)
        local a,f,p,e ;
        a := 1 ;
        for f in ifactors(n)[2] do
            p :=op(1,f) ;
            e :=op(2,f) ;
            a := a*(numtheory[pi](p)+1)^e ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 07 2012
  • Mathematica
    nn=100; a=Table[0, {nn}]; a[[1]]=1; Do[If[PrimeQ[i], a[[i]]=PrimePi[i]+1, p=FactorInteger[i][[1,1]]; a[[i]] = a[[p]]*a[[i/p]]], {i, 2, nn}]; a (* T. D. Noe, Dec 12 2004, revised Sep 27 2011 *)
    Array[Apply[Times, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[ #]] /. p_ /; PrimeQ@ p :> PrimePi@ p + 1] &, 74] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    A064553(n)={n=factor(n);n[,1]=apply(f->1+primepi(f),n[,1]);factorback(n)} \\ M. F. Hasler, Aug 28 2012
    
  • Scheme
    (define (A064553 n) (if (= 1 n) n (* (+ 1 (A055396 n)) (A064553 (A032742 n))))) ;; Antti Karttunen, Aug 22 2017

Formula

a(A000040(n)) = n+1.
Let the prime factorization of n be p1^e1...pk^ek, then a(n) = (pi(p1)+1)^e1...(pi(pk)+1)^ek, where pi(p) is the index of prime p. - T. D. Noe, Dec 12 2004
From Antti Karttunen, Aug 22 2017: (Start)
a(n) = A003963(A003961(n)).
a(A181819(n)) = A000005(n).
a(A290641(n)) = n. (End)

Extensions

Displayed values double-checked with new PARI code by M. F. Hasler, Aug 28 2012

A318953 Maximum Heinz number of a strict factorization of n into factors > 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 21, 23, 33, 31, 39, 41, 51, 55, 57, 59, 69, 67, 87, 85, 93, 83, 111, 97, 123, 115, 129, 109, 165, 127, 159, 155, 177, 187, 195, 157, 201, 205, 231, 179, 255, 191, 237, 253, 249, 211, 285, 227, 319, 295, 303, 241, 345, 341, 357, 335, 327
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

The Heinz number of a factorization (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The strict factorizations of 80 are (2*4*10), (2*5*8), (2*40), (4*20), (5*16), (8*10), (80), with Heinz numbers 609, 627, 519, 497, 583, 551, 409 respectively, so a(80) = 627.
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Max[Times@@Prime/@#&/@Select[facs[n],UnsameQ@@#&]],{n,100}]

A064554 a(n) = Min {k | A064553(k) = n}.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 13, 8, 9, 14, 29, 12, 37, 26, 21, 16, 53, 18, 61, 28, 39, 58, 79, 24, 49, 74, 27, 52, 107, 42, 113, 32, 87, 106, 91, 36, 151, 122, 111, 56, 173, 78, 181, 116, 63, 158, 199, 48, 169, 98, 159, 148, 239, 54, 203, 104, 183, 214, 271, 84, 281, 226, 117, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

A064553(a(n)) = n and A064553(a(k)) <> k for k < a(n). For prime p, a(p)=prime(p-1), which is sequence A055003. - T. D. Noe, Dec 12 2004
a(n) is not multiplicative because a(7*13) = a(91) = 463, but a(7)*a(13) = 13*37 = 481 and 91 is the smallest possible such n. - Christian G. Bower, May 19 2005
a(n) = A080688(n,1). - Reinhard Zumkeller, Oct 01 2012
Minimal shifted Heinz number of a factorization of n, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Crossrefs

Cf. A055003 (prime(prime(n)-1)).

Programs

  • Haskell
    a064554 = head . a080688_row  -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Min[Times@@Prime/@(#-1)&/@facs[n]],{n,100}] (* Gus Wiseman, Sep 05 2018 *)

A064555 a(n) = max { k | A064553(k) = n }.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 319, 317
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

a(n+1) = A000040(n) for 1 < n < 66, but A000040(65) = 313 <> 319 = 11*29 = a(66).
In the plot, the lowest line corresponds to the cases when a(n)=prime(n-1). - T. D. Noe, Dec 12 2004
a(n) = A080688(n,A001055(n)). - Reinhard Zumkeller, Oct 01 2012

Crossrefs

Programs

  • Haskell
    a064555 = last . a080688_row  -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    (* b = A064553 *) nmax = 67; b[1] = 1; b[p_?PrimeQ] := b[p] = PrimePi[p] + 1; b[n_] := b[n] = b[p = FactorInteger[n][[1, 1]]]*b[n/p]; bb = Table[{k, b[k]}, {k, 1, 4*Prime[nmax]}]; A064555 = Max[#[[All, 1]]]& /@ Split[ Sort[bb, #1[[2]] < #2[[2]] &], #1[[2]] == #2[[2]]&]; a[n_] := A064555[[n]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 04 2012 *)

Formula

A064553(a(n)) = n and A064553(a(k)) <> k for k > a(n).

A080444 Write n A001055(n) times.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 24, 24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 28, 29, 30, 30, 30, 30, 30, 31, 32, 32, 32
Offset: 1

Views

Author

Alford Arnold, Mar 21 2003

Keywords

Comments

Consider A001055(24) = 7. The seven ways of factoring 24 can be encoded as 24,30,44,51,55,62 and 83 using A064553.
T(n,k) = A064553(A080688(n,k)) = n for k=1..A001055(n). - Reinhard Zumkeller, Oct 01 2012

Examples

			A001055(12) = 4 so a(18) through a(21) = 12,12,12,12
		

Programs

  • Haskell
    a080444 n k = a080444_tabf !! (n-1) !! (k-1)
    a080444_row n = a080444_tabf !! (n-1)
    a080444_tabf = zipWith replicate a001055_list [1..]
    a080444_list = concat a080444_tabf
    -- Reinhard Zumkeller, Oct 01 2012

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Keyword tabf added by Reinhard Zumkeller, Oct 01 2012

A128629 A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1

Views

Author

Alford Arnold, Mar 29 2007

Keywords

Comments

The array can be constructed by beginning with A007318 (Pascal's triangle) placing each diagonal on a prime row. The other rows are filled in by mapping the prime factorization of the row number to the known sequences on the prime rows and multiplying term by term.

Examples

			Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
		

Crossrefs

Cf. A064553 (second diagonal), A080688 (second diagonal resorted).

Programs

  • Maple
    A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009

Extensions

A-number added to each row of the examples by R. J. Mathar, Sep 09 2009

A318954 Minimum shifted Heinz number of a strict factorization of n into factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 6, 13, 10, 19, 14, 29, 15, 37, 26, 21, 34, 53, 33, 61, 35, 39, 58, 79, 30, 89, 74, 57, 65, 107, 42, 113, 85, 87, 106, 91, 66, 151, 122, 111, 70, 173, 78, 181, 145, 129, 158, 199, 102, 223, 161, 159, 185, 239, 114, 203, 130, 183, 214, 271, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

The shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1).

Examples

			The strict factorizations of 60 are (2*3*10), (2*5*6), (2*30), (3*4*5), (3*20), (4*15), (5*12), (6*10), (60), with shifted Heinz numbers 138, 154, 218, 105, 201, 215, 217, 253, 277 respectively, so a(60) = 105.
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Min[Times@@Prime/@(#-1)&/@Select[facs[n],UnsameQ@@#&]],{n,100}]
Showing 1-10 of 10 results.