cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A064553 a(1) = 1, a(prime(i)) = i + 1 for i > 0 and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 8, 9, 8, 6, 12, 7, 10, 12, 16, 8, 18, 9, 16, 15, 12, 10, 24, 16, 14, 27, 20, 11, 24, 12, 32, 18, 16, 20, 36, 13, 18, 21, 32, 14, 30, 15, 24, 36, 20, 16, 48, 25, 32, 24, 28, 17, 54, 24, 40, 27, 22, 18, 48, 19, 24, 45, 64, 28, 36, 20, 32, 30, 40, 21, 72, 22, 26
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

a(n) <= n for all n and a(x) = x iff x = 2^i * 3^j for i, j >= 0: a(A003586(n)) = A003586(n) for n > 0. By definition a is completely multiplicative and also surjective. a(p) < a(q) for primes p < q.
Completely multiplicative with a(prime(i)) = i + 1. - Charles R Greathouse IV, Sep 07 2012
a(A080688(n,k)) = A080444(n,k) = n for k=1..A001055(n). - Reinhard Zumkeller, Oct 01 2012

Examples

			a(5) = a(prime(3)) = 3 + 1 = 4; a(14) = a(2*7) = a(prime(1)* prime(4)) = (1+1)*(4+1) = 10.
		

Crossrefs

Programs

  • Haskell
    a064553 1 = 1
    a064553 n = product $ map ((+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Feb 17 2012, Jan 28 2011
    
  • Maple
    A064553 := proc(n)
        local a,f,p,e ;
        a := 1 ;
        for f in ifactors(n)[2] do
            p :=op(1,f) ;
            e :=op(2,f) ;
            a := a*(numtheory[pi](p)+1)^e ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 07 2012
  • Mathematica
    nn=100; a=Table[0, {nn}]; a[[1]]=1; Do[If[PrimeQ[i], a[[i]]=PrimePi[i]+1, p=FactorInteger[i][[1,1]]; a[[i]] = a[[p]]*a[[i/p]]], {i, 2, nn}]; a (* T. D. Noe, Dec 12 2004, revised Sep 27 2011 *)
    Array[Apply[Times, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[ #]] /. p_ /; PrimeQ@ p :> PrimePi@ p + 1] &, 74] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    A064553(n)={n=factor(n);n[,1]=apply(f->1+primepi(f),n[,1]);factorback(n)} \\ M. F. Hasler, Aug 28 2012
    
  • Scheme
    (define (A064553 n) (if (= 1 n) n (* (+ 1 (A055396 n)) (A064553 (A032742 n))))) ;; Antti Karttunen, Aug 22 2017

Formula

a(A000040(n)) = n+1.
Let the prime factorization of n be p1^e1...pk^ek, then a(n) = (pi(p1)+1)^e1...(pi(pk)+1)^ek, where pi(p) is the index of prime p. - T. D. Noe, Dec 12 2004
From Antti Karttunen, Aug 22 2017: (Start)
a(n) = A003963(A003961(n)).
a(A181819(n)) = A000005(n).
a(A290641(n)) = n. (End)

Extensions

Displayed values double-checked with new PARI code by M. F. Hasler, Aug 28 2012

A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 11, 13, 8, 10, 17, 9, 19, 14, 23, 29, 12, 15, 22, 31, 37, 26, 41, 21, 43, 16, 20, 25, 34, 47, 53, 18, 33, 38, 59, 61, 28, 35, 46, 67, 39, 71, 58, 73, 79, 24, 30, 44, 51, 55, 62, 83, 49, 89, 74, 97, 27, 57, 101, 52, 65, 82
Offset: 1

Views

Author

Alford Arnold, Mar 23 2003

Keywords

Comments

The number 12 can be written as 3*2*2, 4*3, 6*2 and 12 corresponding to each of the four values (12,15,22,31) in the example. Note that A001055(12) = 4. Since A001055(n) depends only on the least prime signature, the values 1,2,4,6,8,12,16,24,30,32,36,... A025487 are of special interest when counting multisets. (see for example, A035310 and A035341).
A064553(T(n,k)) = A080444(n,k) = n for k=1..A001055(n); T(n,1) = A064554(n); T(n,A001055(n)) = A064554(n). - Reinhard Zumkeller, Oct 01 2012
Row n is the sorted list of shifted Heinz numbers of factorizations of n into factors > 1, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Examples

			a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36)
From _Gus Wiseman_, Sep 05 2018: (Start)
Triangle begins:
   1
   2
   3
   4  5
   7
   6 11
  13
   8 10 17
   9 19
  14 23
  29
  12 15 22 31
  37
  26 41
  21 43
  16 20 25 34 47
Corresponding triangle of factorizations begins:
  (),
  (2),
  (3),
  (2*2), (4),
  (5),
  (2*3), (6),
  (7),
  (2*2*2), (2*4), (8),
  (3*3), (9),
  (2*5), (10),
  (11),
  (2*2*3), (3*4), (2*6), (12).
(End)
		

Crossrefs

Programs

  • Haskell
    a080688 n k = a080688_row n !! (k-1)
    a080688_row n = map (+ 1) $ take (a001055 n) $
                    elemIndices n $ map fromInteger a064553_list
    a080688_tabl = map a080688_row [1..]
    a080688_list = concat a080688_tabl
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)

Extensions

More terms from Sean A. Irvine, Oct 05 2011
Keyword tabf added and definition complemented accordingly by Reinhard Zumkeller, Oct 01 2012

A064555 a(n) = max { k | A064553(k) = n }.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 319, 317
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

a(n+1) = A000040(n) for 1 < n < 66, but A000040(65) = 313 <> 319 = 11*29 = a(66).
In the plot, the lowest line corresponds to the cases when a(n)=prime(n-1). - T. D. Noe, Dec 12 2004
a(n) = A080688(n,A001055(n)). - Reinhard Zumkeller, Oct 01 2012

Crossrefs

Programs

  • Haskell
    a064555 = last . a080688_row  -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    (* b = A064553 *) nmax = 67; b[1] = 1; b[p_?PrimeQ] := b[p] = PrimePi[p] + 1; b[n_] := b[n] = b[p = FactorInteger[n][[1, 1]]]*b[n/p]; bb = Table[{k, b[k]}, {k, 1, 4*Prime[nmax]}]; A064555 = Max[#[[All, 1]]]& /@ Split[ Sort[bb, #1[[2]] < #2[[2]] &], #1[[2]] == #2[[2]]&]; a[n_] := A064555[[n]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 04 2012 *)

Formula

A064553(a(n)) = n and A064553(a(k)) <> k for k > a(n).

A290641 Multiplicative with a(p^e) = prime(p-1)^e.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 13, 8, 9, 14, 29, 12, 37, 26, 21, 16, 53, 18, 61, 28, 39, 58, 79, 24, 49, 74, 27, 52, 107, 42, 113, 32, 87, 106, 91, 36, 151, 122, 111, 56, 173, 78, 181, 116, 63, 158, 199, 48, 169, 98, 159, 148, 239, 54, 203, 104, 183, 214, 271, 84, 281, 226, 117, 64, 259
Offset: 1

Views

Author

Michel Marcus, Aug 08 2017

Keywords

Comments

a(n) = A064554(n) for 1 <= n < 91, but a(91) = 481 differs from A064554(91) = 463. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Map[Prime[#1 - 1]^#2 & @@ # &, FactorInteger[#]]] &, 65] (* Michael De Vlieger, Apr 22 2021 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]-1);); factorback(f);}
    
  • Python
    from sympy import factorint, prime
    from operator import mul
    from functools import reduce
    def a(n):
        return 1 if n==1 else reduce(mul, [prime(p - 1)**e for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
  • Scheme
    (define (A290641 n) (if (= 1 n) n (* (A000040 (+ -1 (A020639 n))) (A290641 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
    

Formula

From Antti Karttunen, Aug 08 2017: (Start)
a(n) = A064989(A064988(n)).
A046523(a(n)) = A046523(n). [Preserves the prime signature of n].
(End)

A369713 a(n) is the sum over all multiplicative partitions k of n of the absolute value of the Möbius function evaluated at k,n in the poset of multiplicative partitions of n under refinement.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 11, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 11, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 5, 2, 1, 16, 2
Offset: 1

Views

Author

Tian Vlasic, Jan 29 2024

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.
For every natural number n, a(n) only depends on the prime signature of n.
a(n) is even if and only if n is a composite number.
Conjecture: There exists c such that a(n) <= n^c for all natural numbers n.

Examples

			The factorizations of 60 followed by their Moebius values are the following:
 (2*2*3*5) -> -3
 (2*2*15) ->  1
 (2*3*10) ->  2
 (2*5*6) ->  2
 (2*30) -> -1
 (3*4*5) ->  2
 (3*20) -> -1
 (4*15) -> -1
 (5*12) -> -1
 (6*10) -> -1
 (60) ->  1
Thus a(60)=16.
		

Crossrefs

Showing 1-6 of 6 results.