cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080718 1, together with numbers n that are the product of two primes p and q such that the multiset of the digits of n coincides with the multiset of the digits of p and q.

Original entry on oeis.org

1, 1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539
Offset: 1

Views

Author

Jeff Heleen, Mar 06 2003

Keywords

Comments

Except for 1, this sequence is a subsequence of A280928. More specifically, members of A280928 are also members of this sequence if and only if they are semiprime. - Ely Golden, Jan 11 2017
This sequence has no equivalent in odd bases. This is because any equivalent of A280928 in an odd base must have all terms having at least 3 prime factors. - Ely Golden, Jan 11 2017
All entries other than 1 are congruent to 4 mod 9, because p*q == p + q mod 9 (with p and q not both divisible by 3) implies p*q == 4 mod 9. - Robert Israel, May 05 2014

Examples

			1255 = 5*251, 12955 = 5*2591, 17482 = 2*8741, 100255 = 5*20051, 146137=317*461, etc.
		

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Maple
    filter:= proc(n) local F,p,q,Ln,Lpq;
      F:= ifactors(n)[2];
      if nops(F) > 2 or convert(F,`+`)[2]<>2 then return false fi;
      p:= F[1][1];
      if nops(F) = 2 then q:= F[2][1] else q:= F[1][1] fi;
      Ln:= sort(convert(n,base,10));
      Lpq:= sort([op(convert(p,base,10)),op(convert(q,base,10))]);
      evalb(Ln = Lpq);
    end proc:
    filter(1):= true:
    A080718:= select(filter,[1, seq(4+9*i,i=1..10^6)]); # Robert Israel, May 04 2014
  • Mathematica
    ptpQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]],fi=Transpose[ FactorInteger[ n]]}, fi[[2]]=={1,1}&&Sort[Flatten[ IntegerDigits/@ fi[[1]]]]==sidn]; Join[{1}, Select[Range[4,550000,9],ptpQ]] (* Harvey P. Dale, Jun 22 2014 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator
        yield 1
        for k in count(4, 9):
            t = sorted(str(k))
            f = factorint(k)
            if sum(f.values()) == 2:
                p, q = min(f), max(f)
                if t == sorted(str(p)+str(q)):
                    yield k
    print(list(islice(agen(), 30))) # Michael S. Branicky, Apr 20 2025

Extensions

Edited by N. J. A. Sloane, Jan 03 2009
Incorrect entry 163797 removed by Robert Israel, May 04 2014