cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051703 Maximal value of products of partitions of n into powers of distinct primes (1 not considered a power).

Original entry on oeis.org

1, 0, 2, 3, 4, 6, 0, 12, 15, 20, 30, 28, 60, 40, 84, 105, 140, 210, 180, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6552, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120
Offset: 0

Views

Author

Keywords

Examples

			a(11) = 28 because max{11, 2*3^2, 2^3*3, 2^2*7} = 28.
		

Crossrefs

Largest element of n-th row of A080743.
A000793(n)=max{A000793(n-1), a(n)}, A000793(0)=1.

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0, 1, `if`(i<1 or n<0, 0, max(b(n, i-1),
          seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))) ))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    nmax = 48; Do[a[n]=0, {n, 1, nmax}]; km = PrimePi[nmax]; For[k=1, k <= km, k++, q = 1; p = Prime[k]; For[i=nmax, i >= 1, i--, q=1; While[q*p <= i, q *= p; If[i == q, m = q, If[a[i - q] != 0, m = q*a[i - q], m = 0]]; a[i] = Max[a[i], m]]]]; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 02 2012, translated from Robert Gerbicz's Pari program *)
  • PARI
    {N=1000;v=vector(N,i,0);forprime(p=2,N,q=1;forstep(i=N,1,-1,
    q=1;while(q*p<=i,q*=p;if(i==q,M=q,if(v[i-q],M=q*v[i-q],M=0));
    v[i]=max(v[i],M))));print(0" "1);for(i=1,N,print(i" "v[i]))} \\ Robert Gerbicz, Jul 31 2012

Extensions

Corrected and extended by Robert Gerbicz, Jul 31 2012

A080743 Array read by rows in which n-th row lists orders of elements of Symm(n) that are not orders of elements of Symm(n-1) (6th row is empty, written as 0 by convention).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 7, 10, 12, 8, 15, 9, 14, 20, 21, 30, 11, 18, 24, 28, 35, 42, 60, 13, 22, 36, 40, 33, 45, 70, 84, 26, 44, 56, 105, 16, 39, 55, 63, 66, 90, 120, 140, 17, 52, 72, 210, 65, 77, 78, 110, 126, 132, 168, 180, 19, 34, 48, 88, 165, 420, 51, 91, 99, 130, 154, 156, 220
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Comments

A051613 gives number of elements in n-th row.

Examples

			1;
2;
3;
4;
5, 6;
0;
7, 10, 12;
8, 15;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, {n},
          {n, seq(map(x-> ilcm(x, i), b(n-i))[], i=2..n-1)}
           minus {seq(b(i)[], i=1..n-1)})
        end:
    T:= proc(n) local l; l:= [b(n, n)[]];
          `if`(nops(l)=0, 0, sort(l)[])
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<1 || n<0, 0, Max[Join[{b[n, i-1]}, Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n]}]]]]] ]; T[1] = {1}; T[6] = {0}; T[n_] := Reap[For[m = n, m <= b[n, PrimePi[n]], m++,  If[n == Total[Power @@@ FactorInteger[m]], Sow[m]]]][[2, 1]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

n-th row = set of m such that A008475(m) = n, or 0 if no such m exists.

Extensions

More terms from Vladeta Jovovic, Mar 12 2003
Showing 1-2 of 2 results.