A051703 Maximal value of products of partitions of n into powers of distinct primes (1 not considered a power).
1, 0, 2, 3, 4, 6, 0, 12, 15, 20, 30, 28, 60, 40, 84, 105, 140, 210, 180, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6552, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120
Offset: 0
Keywords
Examples
a(11) = 28 because max{11, 2*3^2, 2^3*3, 2^2*7} = 28.
Links
- Robert Gerbicz, Table of n, a(n) for n = 0..1000
- J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0, 1, `if`(i<1 or n<0, 0, max(b(n, i-1), seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))) )) end: a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=0..60); # Alois P. Heinz, Feb 16 2013
-
Mathematica
nmax = 48; Do[a[n]=0, {n, 1, nmax}]; km = PrimePi[nmax]; For[k=1, k <= km, k++, q = 1; p = Prime[k]; For[i=nmax, i >= 1, i--, q=1; While[q*p <= i, q *= p; If[i == q, m = q, If[a[i - q] != 0, m = q*a[i - q], m = 0]]; a[i] = Max[a[i], m]]]]; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 02 2012, translated from Robert Gerbicz's Pari program *)
-
PARI
{N=1000;v=vector(N,i,0);forprime(p=2,N,q=1;forstep(i=N,1,-1, q=1;while(q*p<=i,q*=p;if(i==q,M=q,if(v[i-q],M=q*v[i-q],M=0)); v[i]=max(v[i],M))));print(0" "1);for(i=1,N,print(i" "v[i]))} \\ Robert Gerbicz, Jul 31 2012
Extensions
Corrected and extended by Robert Gerbicz, Jul 31 2012
Comments