cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A038701 Prime powers q for which f(g(m(q))) = m(q), where f = A051703, g = A008475 and m = A003418.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 103, 107, 109, 113
Offset: 1

Views

Author

Vladeta Jovovic, May 01 2000

Keywords

Comments

These functions are defined for all natural numbers > 1 by: g(x) = Sum (p_j^k_j) where x = Product (p_j^k_j) is prime factorization of x (A008475); f(n) = max{x:g(x)=n} (A051703); m(n) = lcm(1,2,3,...,n) (A003418).
There are no more prime powers in the list <= 199. Conjecture: The sequence is finite, i.e., f(g(m(q))) > m(q) for sufficiently great prime powers q.
No other terms below 409. - Max Alekseyev, Sep 05 2023

Examples

			27 is not in the list because m(27) = 2^4*3^3*5^2*7*11*13*17*19*23, g(m(27))=158, f(158) = 3*5*7*11*13*17*19*23*29*31 > m(27).
		

Crossrefs

Extensions

Offset changed to 1 by Jinyuan Wang, Mar 16 2020

A080743 Array read by rows in which n-th row lists orders of elements of Symm(n) that are not orders of elements of Symm(n-1) (6th row is empty, written as 0 by convention).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 7, 10, 12, 8, 15, 9, 14, 20, 21, 30, 11, 18, 24, 28, 35, 42, 60, 13, 22, 36, 40, 33, 45, 70, 84, 26, 44, 56, 105, 16, 39, 55, 63, 66, 90, 120, 140, 17, 52, 72, 210, 65, 77, 78, 110, 126, 132, 168, 180, 19, 34, 48, 88, 165, 420, 51, 91, 99, 130, 154, 156, 220
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Comments

A051613 gives number of elements in n-th row.

Examples

			1;
2;
3;
4;
5, 6;
0;
7, 10, 12;
8, 15;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, {n},
          {n, seq(map(x-> ilcm(x, i), b(n-i))[], i=2..n-1)}
           minus {seq(b(i)[], i=1..n-1)})
        end:
    T:= proc(n) local l; l:= [b(n, n)[]];
          `if`(nops(l)=0, 0, sort(l)[])
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<1 || n<0, 0, Max[Join[{b[n, i-1]}, Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n]}]]]]] ]; T[1] = {1}; T[6] = {0}; T[n_] := Reap[For[m = n, m <= b[n, PrimePi[n]], m++,  If[n == Total[Power @@@ FactorInteger[m]], Sow[m]]]][[2, 1]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

n-th row = set of m such that A008475(m) = n, or 0 if no such m exists.

Extensions

More terms from Vladeta Jovovic, Mar 12 2003

A039952 Maximum cardinality of finite D0L sequence over an alphabet with n symbols.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 12, 15, 20, 30, 31, 60, 61, 84, 105, 140, 210, 211, 420, 421, 422, 423, 840, 841, 1260, 1261, 1540, 2310, 2520, 4620, 4621, 5460, 5461, 9240, 9241, 13860, 13861, 16380, 16381, 27720, 30030, 32760, 60060, 60061, 60062, 60063, 120120, 120121
Offset: 0

Views

Author

Keywords

Examples

			a(11) = 31 because we can write 11 = 1 + 2 + 3 + 5 and 31 = 1+2*3*5.
		

References

  • P. M. B. Vitanyi, Lindenmayer Systems: Structure, Languages and Growth Functions, Mathematisch Centrum, Math. Centre Tracts #96, 1980, p. 25.

Crossrefs

Cf. A051703.

Programs

  • PARI
    \\ here s is A051703 as a vector
    s(n)={my(v=vector(n+1)); v[1]=1; forprime(p=2, n, forstep(i=#v, 1, -1, my(q=1); while(q*pAndrew Howroyd, Jan 05 2018

Formula

Max { Prod p^a + d : Sum p^a + d = n }, p prime.
a(n) = max(a(n-1)+1, A051703(n)). - Andrew Howroyd, Jan 05 2018

Extensions

First 4 values appear incorrectly in cited references; corrected by JOS
a(0)=1 and terms a(35) and beyond from Andrew Howroyd, Jan 05 2018

A051704 Maximal value of products of partitions of n into powers of distinct primes (powers of 1 and 2 excluded).

Original entry on oeis.org

1, 0, 0, 3, 0, 5, 0, 7, 15, 9, 21, 11, 35, 13, 45, 105, 63, 17, 77, 165, 99, 315, 117, 385, 143, 495, 1155, 693, 1365, 819, 221, 1001, 3465, 1287, 4095, 1309, 5005, 1683, 6435, 15015, 9009, 2431, 8415, 19635, 11781, 45045, 13923, 25935, 17017, 58905, 21879
Offset: 0

Views

Author

Keywords

Examples

			a(14)=45 because max{3*11,9*5}=45.
		

Crossrefs

Cf. A051703.

Programs

  • Mathematica
    a[n_] := (pp = Reap[ Do[ pk = p^k; If[pk <= n, Sow[pk]], {p, Prime[ Range[2, PrimePi[n]]]}, {k, 1, Ceiling[Log[3, n]]}]][[2, 1]]; sel = Select[ IntegerPartitions[n, All, pp], Length[#] == Length[ Union[#] && !MatchQ[#, {_, x_, _, y_, _} /; GCD[x, y] != 1]] &]; Max[Times @@@ sel]); a[0] = 1; a[1] = a[2] = a[4] = a[6] = 0; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 31 2012 *)

Extensions

a(43) (typo?) corrected by Jean-François Alcover, Jul 31 2012

A080744 Smallest element of n-th row of A080743.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 7, 8, 9, 21, 11, 35, 13, 33, 26, 16, 17, 65, 19, 51, 38, 57, 23, 95, 25, 69, 27, 75, 29, 150, 31, 32, 62, 93, 96, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 49, 141, 98, 147, 53, 245, 106, 159, 212, 265, 59, 371, 61, 177, 122, 64, 244, 305
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Extensions

More terms from Vladeta Jovovic, Mar 09 2003
Showing 1-5 of 5 results.