cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051593 Largest order of even permutation of n elements, or maximal order of element of alternating group A_n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 5, 7, 15, 15, 21, 21, 35, 35, 60, 105, 105, 105, 140, 210, 210, 420, 420, 420, 420, 840, 1155, 1260, 1365, 1540, 2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 15015, 16380, 16380, 27720, 30030, 32760, 60060, 60060, 60060
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Programs

  • Mathematica
    (* a3 = A000793  a4 = A051704 *) a3[n_] := Max[LCM @@@ IntegerPartitions[n]]; a4[n_] := (pp = Reap[ Do[ pk = p^k; If[pk <= n, Sow[pk]], {p, Prime[ Range[2, PrimePi[n]]]}, {k, 1, Ceiling[ Log[3, n]]}]][[2, 1]]; sel = Select[ IntegerPartitions[n, All, pp], Length[#] == Length[ Union[#] && !MatchQ[#, {_, x_, _, y_, _} /; GCD[x, y] != 1]] &]; Max[Times @@@ sel]); a4[0] = 1; a4[1] = a4[2] = a4[4] = a4[6] = 0; a[n_] := Max[a3[n - 2], a4[n - 1], a4[n]]; a[0] = a[1] = a[2] = 1; Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Sep 11 2012, from formula *)
  • PARI
    a(n)={my(m=1); forpart(p=n, if(sum(i=1, #p, p[i]-1)%2==0, m=max(m, lcm(Vec(p))))); m} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n)=max{ A000793(n-2), A051704(n-1), A051704(n) }, a(0)=a(1)=1.

A051703 Maximal value of products of partitions of n into powers of distinct primes (1 not considered a power).

Original entry on oeis.org

1, 0, 2, 3, 4, 6, 0, 12, 15, 20, 30, 28, 60, 40, 84, 105, 140, 210, 180, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6552, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120
Offset: 0

Views

Author

Keywords

Examples

			a(11) = 28 because max{11, 2*3^2, 2^3*3, 2^2*7} = 28.
		

Crossrefs

Largest element of n-th row of A080743.
A000793(n)=max{A000793(n-1), a(n)}, A000793(0)=1.

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0, 1, `if`(i<1 or n<0, 0, max(b(n, i-1),
          seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))) ))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    nmax = 48; Do[a[n]=0, {n, 1, nmax}]; km = PrimePi[nmax]; For[k=1, k <= km, k++, q = 1; p = Prime[k]; For[i=nmax, i >= 1, i--, q=1; While[q*p <= i, q *= p; If[i == q, m = q, If[a[i - q] != 0, m = q*a[i - q], m = 0]]; a[i] = Max[a[i], m]]]]; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 02 2012, translated from Robert Gerbicz's Pari program *)
  • PARI
    {N=1000;v=vector(N,i,0);forprime(p=2,N,q=1;forstep(i=N,1,-1,
    q=1;while(q*p<=i,q*=p;if(i==q,M=q,if(v[i-q],M=q*v[i-q],M=0));
    v[i]=max(v[i],M))));print(0" "1);for(i=1,N,print(i" "v[i]))} \\ Robert Gerbicz, Jul 31 2012

Extensions

Corrected and extended by Robert Gerbicz, Jul 31 2012
Showing 1-2 of 2 results.