cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A057740 Irregular triangle read by rows: T(n,k) is the number of elements of alternating group A_n having order k, for n >= 1, 1 <= k <= A051593(n).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 3, 8, 1, 15, 20, 0, 24, 1, 45, 80, 90, 144, 1, 105, 350, 630, 504, 210, 720, 1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688, 1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192
Offset: 1

Views

Author

Roger Cuculière, Oct 29 2000

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,    0,    2;
  1,    3,    8;
  1,   15,   20,     0,   24;
  1,   45,   80,    90,  144;
  1,  105,  350,   630,  504,   210,   720;
  1,  315, 1232,  3780, 1344,  5040,  5760, 0,     0,    0, 0,     0, 0, 0,  2688;
  1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192;
...
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Programs

  • Magma
    {* Order(g) : g in Alt(6) *};
  • Mathematica
    row[n_] := (orders = PermutationOrder /@ GroupElements[AlternatingGroup[n] ]; Table[Count[orders, k], {k, 1, Max[orders]}]); Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Aug 31 2016 *)

Extensions

More terms from N. J. A. Sloane, Nov 01 2000
Missing zero in the row for A_9 inserted by N. J. A. Sloane, Mar 27 2015

A303728 Triangle read by rows: T(n,k) is the number of labeled cyclic subgroups of order k in the alternating group A_n, 1 <= k <= A051593(n).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 3, 4, 1, 15, 10, 0, 6, 1, 45, 40, 45, 36, 1, 105, 175, 315, 126, 105, 120, 1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336, 1, 1323, 2884, 9450, 756, 18900, 4320, 0, 6720, 2268, 0, 3780, 0, 0, 3024, 1, 5355, 15520, 47250, 19656
Offset: 1

Views

Author

Andrew Howroyd, Jul 03 2018

Keywords

Examples

			Triangle begins:
1;
1;
1, 0, 1;
1, 3, 4;
1, 15, 10, 0, 6;
1, 45, 40, 45, 36;
1, 105, 175, 315, 126, 105, 120;
1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336;
...
		

Crossrefs

Row sums are A051636.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    G(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=x^d*permcount(p)/eulerphi(d))); s}
    for(n=1, 10, print(Vecrev(G(n)/x)))

A053039 Exponent of largest power of 2 which appears in the cototient-iteration started with n!.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 12, 14, 11, 13, 16, 14, 16, 23, 27, 23, 23, 24, 21, 23, 28, 42, 46, 26, 26, 26, 36, 43, 29, 50, 55, 37, 37, 40, 40, 39, 59, 39, 44, 68, 42, 42, 44, 51, 45, 50, 53, 49, 52, 51, 85, 55, 57, 53, 57, 60, 85, 62, 71, 62, 63, 60, 66, 66, 107, 67, 101, 76, 70, 75, 77
Offset: 1

Views

Author

Labos Elemer, Feb 24 2000

Keywords

Comments

If the exponent is a(n), then the number of powers of 2 in the iteration-chain is 1+a(n), the maximal 2-power is 2^a(n) and the number of iterations (until fixed state) performed on these 2-powers is a(n).

Examples

			For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and starting the iteration of A051593 with n!, the first powers of 2 which appear are 1, 2, 4, 16, 32, 128, 512, 4096, 16384, 2048 and the corresponding exponents are a(n) = 0, 1, 2, 4, 5, 7, 9, 12, 14, 11.
		

Crossrefs

Programs

  • Mathematica
    Log2 /@ Table[NestWhile[# - EulerPhi@ # &, n!, ! IntegerQ@ Log2@ # &], {n, 60}] (* Michael De Vlieger, Aug 15 2017 *)
  • PARI
    cototient(x)= x - eulerphi(x)
    FunctionIterate(f,x,t)= {local(retval); retval = vector(0); while(x!=t, x = eval(concat(f,"(x)")); retval = concat(retval,x)); retval;}
    A053039(x) = {local(li,fa,retval); count = 0; li = concat([x! ], FunctionIterate("cototient", x!, 0)); for(i=1,#li, fa = factor(li[i]); if(((matsize(fa)[1] == 1) && (fa[1,1] == 2)),retval = fa[1,2]; break)); retval}
    for(i=1,72,print1(A053039(i),", ")) \\ Olaf Voß, Feb 21 2008

Extensions

More terms from Olaf Voß, Feb 21 2008

A181950 Weighted sum of all cyclic subgroups of the Alternating Group A_n.

Original entry on oeis.org

1, 1, 4, 19, 91, 571, 4096, 38599, 370399, 3771751, 40020916, 486887611, 6457566259, 97397627419, 1566407932636, 25622476773391, 416792928270751, 7346982309720079, 141863542111338124, 2968348473040595971, 65223378275792128771, 1460499016109864574691, 32600807940657384926884
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of the order of all cyclic subgroups of Alt_n.
Each permutation is counted as many times as it appears in a cyclic subgroup.
a(7) = 2^12 is remarkable as a power of 2.

Examples

			a(5) = 1*1 + 2*15 + 3*10 + 5*6 = 1 + 30 +30 +30 = 91.
		

Crossrefs

Programs

  • PARI
    \\ permcount is number of permutations of given type.
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    a(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=d*permcount(p)/eulerphi(d))); s} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = Sum_{k=1..A051593(n)} k*A303728(n, k). - Andrew Howroyd, Jul 03 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jul 03 2018

A057742 Maximal order of element of alternating group A_{2n}.

Original entry on oeis.org

1, 1, 3, 5, 15, 21, 35, 60, 105, 140, 210, 420, 420, 1155, 1365, 2310, 4620, 5460, 9240, 13860, 16380, 27720, 32760, 60060, 60060, 120120, 180180, 180180, 360360, 360360, 510510, 1021020, 1141140, 2042040, 3063060, 3423420, 6126120, 6846840
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2000

Keywords

Crossrefs

Bisection of A051593. Cf. A057743.

Extensions

More terms from Sean A. Irvine, Mar 25 2013

A057743 Maximal order of element of alternating group A_{2n+1}.

Original entry on oeis.org

1, 3, 5, 7, 15, 21, 35, 105, 105, 210, 420, 420, 840, 1260, 1540, 2520, 4620, 5460, 9240, 15015, 16380, 30030, 60060, 60060, 120120, 180180, 180180, 360360, 360360, 471240, 556920, 1021020, 1141140, 2042040, 3063060, 3423420, 6126120, 6846840
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2000

Keywords

Crossrefs

Bisection of A051593. Cf. A057742.

Extensions

More terms from Sean A. Irvine, Mar 25 2013

A355572 Largest LCM of partitions of n into odd parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 7, 15, 15, 21, 21, 35, 35, 45, 105, 105, 105, 105, 165, 165, 315, 315, 385, 385, 495, 1155, 1155, 1365, 1365, 1365, 1365, 3465, 3465, 4095, 4095, 5005, 5005, 6435, 15015, 15015, 15015, 15015, 19635, 19635, 45045, 45045, 45045, 45045, 58905, 58905, 69615, 69615
Offset: 1

Views

Author

Torsten Muetze, Jul 07 2022

Keywords

Comments

The largest LCM is attained for a partition of n into powers of distinct odd primes and 1's.

Examples

			The partitions of n=8 into odd parts are 7+1, 5+3, 5+1+1+1, 3+3+1+1, 3+1+1+1+1+1, 1+1+1+1+1+1+1+1, and the partition with largest LCM among those is 5+3, which has LCM(5,3)=5*3=15, so a(8)=15.
		

Crossrefs

Programs

  • PARI
    a(n) = my(x=1); forpart(p=n, if (!#select(x->((x%2)==0), Vec(p)), x = max(x, lcm(Vec(p))))); x; \\ Michel Marcus, Jul 08 2022

A355573 Largest LCM of partitions of n with a nonzero even number of even parts.

Original entry on oeis.org

2, 2, 4, 6, 6, 12, 12, 20, 30, 30, 60, 60, 84, 84, 140, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540, 2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 27720, 30030, 32760, 60060, 60060, 60060, 60060, 120120, 120120, 180180, 180180, 180180, 180180
Offset: 4

Views

Author

Torsten Muetze, Jul 07 2022

Keywords

Comments

The largest LCM is attained for a partition of n into powers of distinct odd primes, 2^k for some k>0, 2, and 1's.

Examples

			The partitions of n=8 with a nonzero even number of even parts are 6+2, 4+4, 4+2+1+1, 3+2+2+1, 2+2+2+2, 2+2+1+1+1+1, and the partition with largest LCM among those is 3+2+2+1, which has LCM(3,2,2,1)=3*2=6, so a(8)=6.
		

Crossrefs

Showing 1-8 of 8 results.