cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080757 First differences of Beatty sequence A022838(n) = floor(n sqrt(3)).

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2003

Keywords

Comments

Let S(0) = 1; obtain S(k) from S(k-1) by applying 1 -> 221, 2 -> 2221; sequence is S(0), S(1), S(2), ... - Matthew Vandermast, Mar 25 2003
The sequence (a(n+1)-1) is the homogeneous Sturmian sequence with slope sqrt(3)-1, which is fixed point of the morphism 0->110, 1->1101. So (a(n), n>0) is the unique fixed point of the morphism 1->221, 2->2212. - Michel Dekking, Oct 06 2018
The dual version defined by b(n)=1-(a(n)-1) for n>0 is the Sturmian sequence with slope 1-(sqrt(3)-1) = 2-sqrt(3). It is the fixed point of the morphism 0->0010, 1->001. The sequence (b(n)) prefixed with 0 equals A275855. - Michel Dekking, Oct 06 2018

Crossrefs

Equals A007538(n+1) - 1. Cf. A001030.

Programs

  • Haskell
    a080757 = (subtract 1) . a007538 . (+ 1)
    -- Reinhard Zumkeller, Feb 14 2012
  • Mathematica
    Flatten[ NestList[ Flatten[ # /. {1 -> {2, 2, 1}, 2 -> {2, 2, 2, 1}}] &, {1}, 4]] (* Robert G. Wilson v, Jun 20 2005 *)
    Differences[Floor[Range[0,110]Sqrt[3]]] (* Harvey P. Dale, Mar 15 2018 *)

Formula

a(n) = A007538(n+1) - 1. - Reinhard Zumkeller, Feb 13 2012