cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A022838 Beatty sequence for sqrt(3); complement of A054406.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112
Offset: 1

Views

Author

Keywords

Comments

0 <= A144077(n) - a(n) <= 1. - Reinhard Zumkeller, Sep 09 2008
From Reinhard Zumkeller, Jan 20 2010: (Start)
A080757(n) = a(n+1) - a(n).
A171970(n) = floor(a(n)/2).
A171972(n) = a(A000290(n)). (End)
Numbers k>0 such that A194979(k+1) = A194979(k) + 1. - Clark Kimberling, Dec 02 2014
Powers of 2 (i.e, 1, 8, 32, 64, 128, 256, 512, 4096, 8192,...) appear at n=1, 5, 19, 37, 74, 148, 296, 2365, 4730, 18919, 75675, 151349, 302698, 605396, ... related to A293328. - R. J. Mathar, Jan 17 2025

Crossrefs

Cf. A080757 (first differences), A194106 (partial sums), A194028 (even bisection), A184796 (prime terms).
Cf. A026255, A054406 (complement).

Programs

Formula

a(n) = floor(n*sqrt(3)). - Reinhard Zumkeller, Jan 20 2010
a(n) = 2 * floor(n * (sqrt(3) - 1)) + floor(n * (2 - sqrt(3))) + 1. - Miko Labalan, Dec 03 2016

A007538 A self-generating sequence: there are a(n) 3's between successive 2's.

Original entry on oeis.org

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3
Offset: 1

Views

Author

Keywords

Comments

(a(n)) is the unique fixed point of the morphism 2->233, 3->2333 (immediate from its definition). - Michel Dekking, Feb 21 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a007538 n = f n 2 2 2 where
       f 1 b   = b
       f n b 0 i = f (n - 1) 2 (a007538 i) (i + 1)
       f n b c i = f (n - 1) 3 (c - 1) i
    -- Reinhard Zumkeller, Feb 14 2012
  • Mathematica
    f[n_, b_, c_, i_] := f[n, b, c, i] = If[n == 1, b, If[c == 0 , f[n-1, 2, a[i], i+1], f[n-1, 3, c-1, i]]]; a[n_] := f[n, 2, 2, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2013, after Reinhard Zumkeller *)
    Table[Floor[n (1 + Sqrt@ 3)] - Floor[(n - 1) (1 + Sqrt@ 3)], {n, 120}] (* Michael De Vlieger, Oct 08 2016 *)
    t = {2};Table[If[t[[i]] == 2, AppendTo[t, #] & /@ {3, 3, 2}, AppendTo[t, #] & /@ {3, 3, 3, 2}], {i, 20}];t   (* Horst H. Manninger, Jan 11 2024 *)

Formula

a(n) = floor( n*(1+sqrt(3)) ) - floor( (n-1)*(1+sqrt(3)) ).
a(n) = f(n,2,2,2) with f(n,b,c,i) = if n=1 then b else (if c=0 then f(n-1,2,a(i),i+1) else f(n-1,3,c-1,i)). - Reinhard Zumkeller, May 25 2009
a(n) = A080757(n-1) + 1; a(n) = A188068(n) + 2. - Reinhard Zumkeller, Feb 14 2012
a(A188069(n)) = 2; a(A188070(n)) = 3. - Reinhard Zumkeller, Feb 14 2012
Showing 1-2 of 2 results.