A080827 Rounded up staircase on natural numbers.
1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405, 1459
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. C. F. de Winter, Using the Student's t-test with extremely small sample sizes, Practical Assessment, Research & Evaluation, 18(10), 2013.
- Girtrude Hamm, Classification of lattice triangles by their two smallest widths, arXiv:2304.03007 [math.CO], 2023.
- David James Sycamore, Triangular array.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
GAP
List([1..10],n->Int(n^2/2)+1); # Muniru A Asiru, Aug 02 2018
-
Magma
[n*(n+1)/2-Floor((n-1)/2) : n in [1..60]]; // Vincenzo Librandi, Aug 05 2013
-
Maple
A080827:=n->(n^2+2-(1-(-1)^n)/2)/2: seq(A080827(n), n=1..100); # Wesley Ivan Hurt, Sep 08 2015
-
Mathematica
CoefficientList[Series[(1 + x - x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *) Ceiling[(Range[100]^2 + 1)/2] (* Paolo Xausa, Jul 19 2025 *)
Formula
a(n) = ceiling((n^2+1)/2).
a(1) = 1, a(2n) = a(2n-1) + 2n, a(2n+1) = a(2n) + 2n. - Amarnath Murthy, May 07 2003
From Paul Barry, Apr 12 2008: (Start)
G.f.: x*(1+x-x^2+x^3)/((1+x)(1-x)^3).
a(n) = n*(n+1)/2-floor((n-1)/2). [corrected by R. J. Mathar, Jul 14 2013] (End)
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4.
a(n) = (n^2 + 2 - (1 - (-1)^n)/2)/2.
a(n) = floor(n^2/2) + 1 = A007590(n-1) + 1. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1/2. - Amiram Eldar, Sep 15 2022
E.g.f.: ((2 + x + x^2)*cosh(x) + (1 + x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 27 2024
Comments