A080833 E.g.f.: exp( x/(1 - x - x^2) ).
1, 1, 3, 19, 145, 1401, 16051, 213403, 3223809, 54514225, 1019601091, 20890209891, 465156779473, 11181638663209, 288536019179955, 7953590111627371, 233211718410856321, 7246720953253750113, 237849724555558441219, 8221578401608012672435, 298505383888840158941841
Offset: 0
Links
Crossrefs
Cf. A005443.
Programs
-
Mathematica
CoefficientList[Series[E^(x/(1-x-x^2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1-x-x^2)))) \\ Michel Marcus, Jun 07 2021
Formula
E.g.f.: exp( x/(1 - x - x^2) ).
a(n) = n!*sum{i=0..n, sum{j=0..n, C(i+j-1, j)*C(j, n-i-j)/i!}}. - Paul Barry, Aug 29 2005
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x-x^2)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 27 2013
Recurrence: a(n) = (2*n-1)*a(n-1) + (n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*(2*n-7)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ ((1+sqrt(5))/2)^n*exp(2*sqrt(n)/5^(1/4)-n-1/10)*n^(n-1/4)/(sqrt(2)*5^(1/8)). - Vaclav Kotesovec, Jun 27 2013
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k! * Fibonacci(k) * a(n-k). - Ilya Gutkovskiy, Jun 07 2021
Comments