A080860 a(n) = 10*n^2 + 5*n + 1.
1, 16, 51, 106, 181, 276, 391, 526, 681, 856, 1051, 1266, 1501, 1756, 2031, 2326, 2641, 2976, 3331, 3706, 4101, 4516, 4951, 5406, 5881, 6376, 6891, 7426, 7981, 8556, 9151, 9766, 10401, 11056, 11731, 12426, 13141, 13876, 14631, 15406, 16201, 17016, 17851
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[10n^2+5n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,16,51},50] (* Harvey P. Dale, Aug 05 2014 *)
-
PARI
a(n)=10*n^2+5*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = C(5,0) + C(5,1)*n + C(5,2)*n^2.
G.f.: (C(4,0) + (C(6,2) - 2)*x + C(4,2)*x^2)/(1-x)^3 = (1 + 13*x + 6*x^2)/(1-x)^3.
a(n) = 20*n + a(n-1) - 5 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(1 + 15*x + 10*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Sum_{n>=0} a(n)/n! = 26*e. - Davide Rotondo, Feb 15 2025
Extensions
Definition replaced with the closed form by Bruno Berselli, Jan 16 2013
Comments