cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080878 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 4, 14, 20, 72, 104, 376, 544, 1968, 2848, 10304, 14912, 53952, 78080, 282496, 408832, 1479168, 2140672, 7745024, 11208704, 40553472, 58689536, 212340736, 307302400, 1111830528, 1609056256, 5821620224, 8425127936, 30482399232
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 14*x^4 + 20*x^5 + 72*x^6 + 104*x^7 + 376*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 2^n, 1] SeriesCoefficient[ (1 + x - 3*x^2 - 2*x^3)/(1 - 6*x^2 + 4*x^4), {x, 0, Abs@n}]; (* Michael Somos, May 25 2014 *)
    a[ n_] := 2^Quotient[ n - 1, 2] If[ OddQ@n, Fibonacci@n, LucasL@n]; (* Michael Somos, May 25 2014 *)
    LinearRecurrence[{0,6,0,-4},{1,1,3,4},40] (* Harvey P. Dale, Dec 07 2014 *)
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polcoeff( (1 + x - 3*x^2 - 2*x^3) / (1 - 6*x^2 + 4*x^4) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, May 25 2014 */
    
  • PARI
    {a(n) = 2^((n - 1)\2) * if( n%2, fibonacci(n), fibonacci(n-1) + fibonacci(n+1))}; /* Michael Somos, May 25 2014 */

Formula

G.f.: (1 + x - 3*x^2 - 2*x^3) / (1 - 6*x^2 + 4*x^4). a(n) = 6*a(n-2) - 4*a(n-4). - Michael Somos, Mar 05 2003
a(2n) = A080877(2n+1), a(2n+1) = A080877(2n+2)/2.
a(n) = (1/20*10^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*10^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*10^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + ( - 1/20*10^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n. - Richard Choulet, Dec 07 2008
a(-n) = a(n) / 2^n. a(2*n) = A098648(n). a(2*n + 1) = A082761(n). - Michael Somos, May 25 2014
0 = a(n)*(+2*a(n+2)) + a(n+1)*(+2*a(n+1) - 7*a(n+2) + a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, May 25 2014