cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080879 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=6.

Original entry on oeis.org

1, 1, 6, 7, 44, 52, 328, 388, 2448, 2896, 18272, 21616, 136384, 161344, 1017984, 1204288, 7598336, 8988928, 56714752, 67094272, 423324672, 500798464, 3159738368, 3738010624, 23584608256, 27900891136, 176037912576, 208255086592, 1313964867584, 1554437128192
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <-4|8>>^floor(n/2). <<1, 6+(n mod 2)>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 18 2023
  • Mathematica
    LinearRecurrence[{0,8,0,-4},{1,1,6,7},30] (* Harvey P. Dale, Mar 10 2015 *)

Formula

a(2n) = A080876(2n+3)/2, a(2n+1) = A080876(2n+4)/4.
G.f.: (-x^3 - 2*x^2 + x + 1)/(4*x^4 - 8*x^2 + 1).
a(n) = ((9/16)*sqrt(3) - 7/16)*(1 + sqrt(3))^n + (-(9/16)*sqrt(3) - 7/16)*(1 - sqrt(3))^n + (-(19/48)*sqrt(3) + 15/16)*(-(1 + sqrt(3)))^n + ((19/48)*sqrt(3) + 15/16)*(-(1 - sqrt(3)))^n. - Richard Choulet, Dec 06 2008
a(n+4) = 8*a(n+2) - 4*a(n). - Richard Choulet, Dec 06 2008