cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080882 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=3, a(2)=7.

Original entry on oeis.org

1, 3, 7, 22, 52, 164, 388, 1224, 2896, 9136, 21616, 68192, 161344, 508992, 1204288, 3799168, 8988928, 28357376, 67094272, 211662336, 500798464, 1579869184, 3738010624, 11792304128, 27900891136, 88018956288, 208255086592
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[22,7,3,1]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [0,8,0,-4][i] else 0 fi)^(n))[1,4]: seq(a(n), n=0..26); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    a[0]=1; a[1]=3; a[2]=7; a[3]=22; a[n_] := a[n] = 8*a[n-2] - 4*a[n-4]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 15 2015, after Richard Choulet *)
    LinearRecurrence[{0,8,0,-4},{1,3,7,22},30] (* Harvey P. Dale, Mar 23 2025 *)

Formula

a(2n)=A080879(2n+1)=A080876(2n+4)/4, a(2n+1)=A080879(2n+2)/2=A080876(2n+5)/4.
G.f.: (-2*x^3 - x^2 + 3*x + 1)/(4*x^4 - 8*x^2 + 1).
a(n + 4) = 8*a(n + 2) - 4*a(n). - Richard Choulet, Dec 06 2008
a(n) = (7/24*3^(1/2) + 1/2)*((1 + sqrt(3)))^n + ( - 7/24*3^(1/2) + 1/2)*((1 - sqrt(3)))^n + ( - 1/24*3^(1/2))*( - (1 + sqrt(3)))^n + (1/24*3^(1/2))*( - ((1 - sqrt(3))))^n. - Richard Choulet, Dec 06 2008