A080930 a(n) = 2^(n-3)*(n+2)*(n+3)*(n+4)/3.
1, 5, 20, 70, 224, 672, 1920, 5280, 14080, 36608, 93184, 232960, 573440, 1392640, 3342336, 7938048, 18677760, 43581440, 100925440, 232128512, 530579456, 1205862400, 2726297600, 6134169600, 13740539904, 30651973632, 68115496960
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
Crossrefs
Cf. A080928.
Programs
-
GAP
List([0..30], n-> 2^(n-2)*Binomial(n+4,3)); # G. C. Greubel, Aug 27 2019
-
Magma
[Binomial(n+3,3)*2^(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
-
Maple
[seq (binomial(n+3,3)*2^(n-3),n=1..27)]; # Zerinvary Lajos, Oct 29 2006
-
Mathematica
CoefficientList[Series[(1-x)(1 -2x +2x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{8, -24, 32, -16}, {1, 5, 20, 70}, 30] (* Bruno Berselli, Aug 06 2013 *)
-
PARI
a(n)=2^(n-3)*(n+2)*(n+3)*(n+4)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[2^(n-2)*binomial(n+4,3) for n in (0..30)] # G. C. Greubel, Aug 27 2019
Formula
G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^4 = (1-3*x+4*x^2-2*x^3)/(1-2*x)^4.
a(n) = binomial(n+3,3)*2^(n-3), n>0. - Zerinvary Lajos, Oct 29 2006
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3, a(0)=1, a(1)=5, a(2)=20, a(3)=70. - Bruno Berselli, Aug 06 2013
E.g.f.: (3 +9*x +6*x^2 +x^3)*exp(2*x)/3. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*log(2) - 32.
Sum_{n>=0} (-1)^n/a(n) = 176 - 432*log(3/2). (End)
Extensions
Edited by Bruno Berselli, Aug 06 2013
Comments