cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080930 a(n) = 2^(n-3)*(n+2)*(n+3)*(n+4)/3.

Original entry on oeis.org

1, 5, 20, 70, 224, 672, 1920, 5280, 14080, 36608, 93184, 232960, 573440, 1392640, 3342336, 7938048, 18677760, 43581440, 100925440, 232128512, 530579456, 1205862400, 2726297600, 6134169600, 13740539904, 30651973632, 68115496960
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Old definition was "Sequence associated with recurrence a(n)=2*a(n-1)+k(k+2)*a(n-2)". See the first comment in A080928.
The fourth column of triangle A080928 (after 0) is 4*a(n).

Crossrefs

Cf. A080928.

Programs

  • GAP
    List([0..30], n-> 2^(n-2)*Binomial(n+4,3)); # G. C. Greubel, Aug 27 2019
  • Magma
    [Binomial(n+3,3)*2^(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
    
  • Maple
    [seq (binomial(n+3,3)*2^(n-3),n=1..27)]; # Zerinvary Lajos, Oct 29 2006
  • Mathematica
    CoefficientList[Series[(1-x)(1 -2x +2x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{8, -24, 32, -16}, {1, 5, 20, 70}, 30] (* Bruno Berselli, Aug 06 2013 *)
  • PARI
    a(n)=2^(n-3)*(n+2)*(n+3)*(n+4)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [2^(n-2)*binomial(n+4,3) for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^4 = (1-3*x+4*x^2-2*x^3)/(1-2*x)^4.
a(n) = binomial(n+3,3)*2^(n-3), n>0. - Zerinvary Lajos, Oct 29 2006
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3, a(0)=1, a(1)=5, a(2)=20, a(3)=70. - Bruno Berselli, Aug 06 2013
E.g.f.: (3 +9*x +6*x^2 +x^3)*exp(2*x)/3. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*log(2) - 32.
Sum_{n>=0} (-1)^n/a(n) = 176 - 432*log(3/2). (End)

Extensions

Edited by Bruno Berselli, Aug 06 2013