cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080957 Expansion of (5 - 9*x + 6*x^2)/(1-x)^4.

Original entry on oeis.org

5, 11, 20, 34, 55, 85, 126, 180, 249, 335, 440, 566, 715, 889, 1090, 1320, 1581, 1875, 2204, 2570, 2975, 3421, 3910, 4444, 5025, 5655, 6336, 7070, 7859, 8705, 9610, 10576, 11605, 12699, 13860, 15090, 16391, 17765, 19214, 20740, 22345, 24031, 25800
Offset: 0

Views

Author

Paul Barry, Mar 01 2003

Keywords

Comments

Coefficient of x in the polynomial 6*(C(n,0) + C(n+1,1)*x + C(n+2,2)*x*(x-1)/2 + C(n+3,3)*x*(x-1)*(x-2)/6).

Crossrefs

Programs

  • Magma
    [(2*n^3+3*n^2+31*n+30)/6: n in [0..50]]; // Vincenzo Librandi, Sep 07 2015
    
  • Mathematica
    CoefficientList[Series[(5-9 x +6 x^2)/(1-x)^4, {x, 0, 45}], x] (* Vincenzo Librandi Sep 07 2015 *)
    LinearRecurrence[{4,-6,4,-1},{5,11,20,34},50] (* Harvey P. Dale, Dec 23 2018 *)
  • PARI
    Vec((5-9*x+6*x^2)/(1-x)^4 + O(x^60)) \\ Michel Marcus, Sep 06 2015
    
  • PARI
    a(n)=(2*n^3 + 3*n^2 + 31*n + 30)/6;
    vector(40, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
    
  • SageMath
    def A080957(n): return (2*n^3 +3*n^2 +31*n +30)//6
    print([A080957(n) for n in range(51)]) # G. C. Greubel, May 08 2025

Formula

a(n) = 3!*(C(n+1, 1) - C(n+2, 2)/2 + C(n+3, 3)/3) = (2*n^3 + 3*n^2 + 31*n + 30)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Vincenzo Librandi, Sep 07 2015
a(n+1) = a(n) + A117951(n+1), a(0) = 5. - Altug Alkan, Sep 28 2015
E.g.f.: (1/6)*(30 + 36*x + 9*x^2 + 2*x^3)*exp(x). - G. C. Greubel, May 08 2025