cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080961 Fourth binomial transform of A010686 (period 2: repeat 1,5).

Original entry on oeis.org

1, 9, 57, 321, 1713, 8889, 45417, 230001, 1158753, 5820009, 29178777, 146130081, 731358993, 3658920729, 18300980937, 91524036561, 457677578433, 2288560079049, 11443316955897, 57218134461441, 286095321353073, 1430490553902969, 7152494610927657, 35762598578876721
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Examples

			G.f. = 1 + 9*x + 57*x^2 + 321*x^3 + 1713*x^4 + 8889*x^5 + 45417*x^6 + 230001*x^7 + ...
		

Crossrefs

Programs

  • Magma
    binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >;
    binomtf(binomtf(binomtf(binomtf(&cat[ [1, 5]: n in [1..11] ])))); // Klaus Brockhaus, Nov 26 2009
    
  • Magma
    [3*5^n - 2*3^n: n in [0..30]]; // Vincenzo Librandi, Dec 07 2012
  • Maple
    A080961:=n->3*5^n-2*3^n: seq(A080961(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2016
  • Mathematica
    CoefficientList[Series[(1 + x)/((1 - 3*x) * (1 - 5*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2012 *)

Formula

a(n) = 5*a(n-1) + 4*3^(n-1).
a(n) = 3*5^n - 2*3^n.
G.f.: (1+x)/((1-3*x)*(1-5*x)). - Klaus Brockhaus, Nov 26 2009
From Mario C. Enriquez, Dec 08 2016: (Start)
a(n) = A005059(n+1) + A005059(n) = (5^(n+1)+5^n-3^(n+1)-3^n)/2.
a(n) = Sum_{k=0..n} A003948(n-k)*3^k = Sum_{k=0..n} (3^k * ceiling(Sum_{v=0..n-k} (5^v - 5^(v-2)))). (End)
a(n) = 8*a(n-1) - 15*a(n-2) for n > 1. - Wesley Ivan Hurt, Dec 08 2016
E.g.f.: exp(3*x)*(3*exp(2*x) - 2). - Stefano Spezia, Jul 23 2024

Extensions

Definition corrected, edited by Klaus Brockhaus, Nov 26 2009