A081009 a(n) = Fibonacci(4n+3) - 1, or Fibonacci(2n+2)*Lucas(2n+1).
1, 12, 88, 609, 4180, 28656, 196417, 1346268, 9227464, 63245985, 433494436, 2971215072, 20365011073, 139583862444, 956722026040, 6557470319841, 44945570212852, 308061521170128, 2111485077978049, 14472334024676220, 99194853094755496
Offset: 0
References
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Programs
-
GAP
List([0..30], n-> Fibonacci(4*n+3)-1); # G. C. Greubel, Jul 14 2019
-
Magma
[Fibonacci(4*n+3)-1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
-
Maple
with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+3)-1) od # James Sellers, Mar 03 2003
-
Mathematica
Fibonacci[4*Range[0,30] +3] -1 (* G. C. Greubel, Jul 14 2019 *) LinearRecurrence[{8,-8,1},{1,12,88},30] (* Harvey P. Dale, Sep 23 2019 *)
-
PARI
vector(30, n, n--; fibonacci(4*n+3)-1) \\ G. C. Greubel, Jul 14 2019
-
Sage
[fibonacci(4*n+3)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
Formula
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (1+4*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
Product_{n>=1} (1 - 1/a(n)) = (5+sqrt(5))/8 = A134944 + 1/2. - Amiram Eldar, Nov 28 2024
Extensions
More terms from James Sellers, Mar 03 2003