A081010 a(n) = Fibonacci(4n+1) + 2, or Fibonacci(2n-1)*Lucas(2n+2).
3, 7, 36, 235, 1599, 10948, 75027, 514231, 3524580, 24157819, 165580143, 1134903172, 7778742051, 53316291175, 365435296164, 2504730781963, 17167680177567, 117669030460996, 806515533049395, 5527939700884759, 37889062373143908, 259695496911122587
Offset: 0
References
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Programs
-
GAP
List([0..30], n-> Fibonacci(4*n+1)+2); # G. C. Greubel, Jul 14 2019
-
Magma
[Fibonacci(4*n+1) +2: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
-
Maple
with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+1)+2) od # James Sellers, Mar 03 2003
-
Mathematica
Fibonacci[4*Range[0,30]+1]+2 (* G. C. Greubel, Jul 14 2019 *)
-
PARI
vector(30, n, n--; fibonacci(4*n+1)+2) \\ G. C. Greubel, Jul 14 2019
-
Sage
[fibonacci(4*n+1)+2 for n in (0..30)] # G. C. Greubel, Jul 14 2019
Formula
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (3-17*x+4*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
Product_{n>=0} (1 - 1/a(n)) = 1 - 1/sqrt(5) = A322159. - Amiram Eldar, Nov 28 2024
Extensions
More terms from James Sellers, Mar 03 2003