A081040
5th binomial transform of (1,4,0,0,0,0,...).
Original entry on oeis.org
1, 9, 65, 425, 2625, 15625, 90625, 515625, 2890625, 16015625, 87890625, 478515625, 2587890625, 13916015625, 74462890625, 396728515625, 2105712890625, 11138916015625, 58746337890625, 308990478515625, 1621246337890625
Offset: 0
-
[(4*n+5)*5^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 - x) / (1 - 5 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{10,-25},{1,9},30] (* Harvey P. Dale, Jan 10 2021 *)
-
a(n)=(4*n+5)*5^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
A081042
7th binomial transform of (1,6,0,0,0,0,0,0,...).
Original entry on oeis.org
1, 13, 133, 1225, 10633, 88837, 722701, 5764801, 45294865, 351652861, 2703691669, 20620693177, 156208812697, 1176509412085, 8816899947037, 65787638066353, 488998835524129, 3622389432086509, 26752509108528805, 197038045347164329
Offset: 0
-
[(6*n+7)*7^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 - x)/(1 - 7 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{14,-49},{1,13},20] (* Harvey P. Dale, Jan 24 2014 *)
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-3 of 3 results.